94 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Estimation of Markov Chain via Rank-Constrained Likelihood

    Full text link
    This paper studies the estimation of low-rank Markov chains from empirical trajectories. We propose a non-convex estimator based on rank-constrained likelihood maximization. Statistical upper bounds are provided for the Kullback-Leiber divergence and the â„“2\ell_2 risk between the estimator and the true transition matrix. The estimator reveals a compressed state space of the Markov chain. We also develop a novel DC (difference of convex function) programming algorithm to tackle the rank-constrained non-smooth optimization problem. Convergence results are established. Experiments show that the proposed estimator achieves better empirical performance than other popular approaches.Comment: Accepted at ICML 201

    Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières (Codes et Applications)

    Get PDF
    Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes.Based on theoretical and algorithmic tools of DC programming and DCA, the research in this thesis focus on the local and global approaches for non convex optimization and global mixed integer optimization. The thesis consists of 5 chapters. The first chapter presents fundamentals of DC programming and DCA, and techniques of Branch and Bound method (B&B) for global optimization (using the DC relaxation technique for calculating lower bounds of the optimal value). It shall include results concerning the exact penalty technique in mixed integer programming. The second chapter is devoted of a DCA method for solving a class of NP-hard nonconvex nonlinear mixed integer programs. These nonconvex problems are firstly reformulated as DC programs via penalty techniques in DC programming so that the resulting DC programs are effectively solved by DCA and B&B well adapted. As a first application in financial optimization, we modeled the problem pf portfolio selection under concave transaction costs and applied DCA and B&B to its solutions. In the next chapter we study the modeling of the problem of minimization of nonconvex discontinuous transaction costs in portfolio selection in two forms: the first is a DC program obtained by approximating the objective function of the original problem by a DC polyhedral function and the second is an equivalent mixed 0-1 DC program. And we present DCA, B&B algorithm, and a combined DCA-B&B algorithm for their solutions. Chapter 4 studied the exact solution for the multi-objective mixed zero-one linear programming problem and presents two practical applications of proposed method. We are interested int the last chapter two challenging problems: the linear integer least squares problem and the Nonnegative Mattrix Factorization problem (NMF). The NMF method is particularly important because of its many various applications of the first are in telecommunications. The numerical simulations show the robustness, speed (thus scalability), performance, and the globality of DCA in comparison to existent methods.ROUEN-INSA Madrillet (765752301) / SudocSudocFranceF

    A Unified Bregman Alternating Minimization Algorithm for Generalized DC Programming with Application to Imaging Data

    Full text link
    In this paper, we consider a class of nonconvex (not necessarily differentiable) optimization problems called generalized DC (Difference-of-Convex functions) programming, which is minimizing the sum of two separable DC parts and one two-block-variable coupling function. To circumvent the nonconvexity and nonseparability of the problem under consideration, we accordingly introduce a Unified Bregman Alternating Minimization Algorithm (UBAMA) by maximally exploiting the favorable DC structure of the objective. Specifically, we first follow the spirit of alternating minimization to update each block variable in a sequential order, which can efficiently tackle the nonseparablitity caused by the coupling function. Then, we employ the Fenchel-Young inequality to approximate the second DC components (i.e., concave parts) so that each subproblem reduces to a convex optimization problem, thereby alleviating the computational burden of the nonconvex DC parts. Moreover, each subproblem absorbs a Bregman proximal regularization term, which is usually beneficial for inducing closed-form solutions of subproblems for many cases via choosing appropriate Bregman kernel functions. It is remarkable that our algorithm not only provides an algorithmic framework to understand the iterative schemes of some novel existing algorithms, but also enjoys implementable schemes with easier subproblems than some state-of-the-art first-order algorithms developed for generic nonconvex and nonsmooth optimization problems. Theoretically, we prove that the sequence generated by our algorithm globally converges to a critical point under the Kurdyka-{\L}ojasiewicz (K{\L}) condition. Besides, we estimate the local convergence rates of our algorithm when we further know the prior information of the K{\L} exponent.Comment: 44 pages, 7figures, 5 tables. Any comments are welcom

    Non-Convex and Geometric Methods for Tomography and Label Learning

    Get PDF
    Data labeling is a fundamental problem of mathematical data analysis in which each data point is assigned exactly one single label (prototype) from a finite predefined set. In this thesis we study two challenging extensions, where either the input data cannot be observed directly or prototypes are not available beforehand. The main application of the first setting is discrete tomography. We propose several non-convex variational as well as smooth geometric approaches to joint image label assignment and reconstruction from indirect measurements with known prototypes. In particular, we consider spatial regularization of assignments, based on the KL-divergence, which takes into account the smooth geometry of discrete probability distributions endowed with the Fisher-Rao (information) metric, i.e. the assignment manifold. Finally, the geometric point of view leads to a smooth flow evolving on a Riemannian submanifold including the tomographic projection constraints directly into the geometry of assignments. Furthermore we investigate corresponding implicit numerical schemes which amount to solving a sequence of convex problems. Likewise, for the second setting, when the prototypes are absent, we introduce and study a smooth dynamical system for unsupervised data labeling which evolves by geometric integration on the assignment manifold. Rigorously abstracting from ``data-label'' to ``data-data'' decisions leads to interpretable low-rank data representations, which themselves are parameterized by label assignments. The resulting self-assignment flow simultaneously performs learning of latent prototypes in the very same framework while they are used for inference. Moreover, a single parameter, the scale of regularization in terms of spatial context, drives the entire process. By smooth geodesic interpolation between different normalizations of self-assignment matrices on the positive definite matrix manifold, a one-parameter family of self-assignment flows is defined. Accordingly, the proposed approach can be characterized from different viewpoints such as discrete optimal transport, normalized spectral cuts and combinatorial optimization by completely positive factorizations, each with additional built-in spatial regularization
    • …
    corecore