145 research outputs found

    Supervised Learning with Similarity Functions

    Full text link
    We address the problem of general supervised learning when data can only be accessed through an (indefinite) similarity function between data points. Existing work on learning with indefinite kernels has concentrated solely on binary/multi-class classification problems. We propose a model that is generic enough to handle any supervised learning task and also subsumes the model previously proposed for classification. We give a "goodness" criterion for similarity functions w.r.t. a given supervised learning task and then adapt a well-known landmarking technique to provide efficient algorithms for supervised learning using "good" similarity functions. We demonstrate the effectiveness of our model on three important super-vised learning problems: a) real-valued regression, b) ordinal regression and c) ranking where we show that our method guarantees bounded generalization error. Furthermore, for the case of real-valued regression, we give a natural goodness definition that, when used in conjunction with a recent result in sparse vector recovery, guarantees a sparse predictor with bounded generalization error. Finally, we report results of our learning algorithms on regression and ordinal regression tasks using non-PSD similarity functions and demonstrate the effectiveness of our algorithms, especially that of the sparse landmark selection algorithm that achieves significantly higher accuracies than the baseline methods while offering reduced computational costs.Comment: To appear in the proceedings of NIPS 2012, 30 page

    Improved Subsampled Randomized Hadamard Transform for Linear SVM

    Full text link
    Subsampled Randomized Hadamard Transform (SRHT), a popular random projection method that can efficiently project a dd-dimensional data into rr-dimensional space (rβ‰ͺdr \ll d) in O(dlog(d))O(dlog(d)) time, has been widely used to address the challenge of high-dimensionality in machine learning. SRHT works by rotating the input data matrix X∈RnΓ—d\mathbf{X} \in \mathbb{R}^{n \times d} by Randomized Walsh-Hadamard Transform followed with a subsequent uniform column sampling on the rotated matrix. Despite the advantages of SRHT, one limitation of SRHT is that it generates the new low-dimensional embedding without considering any specific properties of a given dataset. Therefore, this data-independent random projection method may result in inferior and unstable performance when used for a particular machine learning task, e.g., classification. To overcome this limitation, we analyze the effect of using SRHT for random projection in the context of linear SVM classification. Based on our analysis, we propose importance sampling and deterministic top-rr sampling to produce effective low-dimensional embedding instead of uniform sampling SRHT. In addition, we also proposed a new supervised non-uniform sampling method. Our experimental results have demonstrated that our proposed methods can achieve higher classification accuracies than SRHT and other random projection methods on six real-life datasets.Comment: AAAI-2

    A Modern Introduction to Online Learning

    Full text link
    In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.Comment: Fixed more typos, added more history bits, added local norms bounds for OMD and FTR

    Exploiting Smoothness in Statistical Learning, Sequential Prediction, and Stochastic Optimization

    Full text link
    In the last several years, the intimate connection between convex optimization and learning problems, in both statistical and sequential frameworks, has shifted the focus of algorithmic machine learning to examine this interplay. In particular, on one hand, this intertwinement brings forward new challenges in reassessment of the performance of learning algorithms including generalization and regret bounds under the assumptions imposed by convexity such as analytical properties of loss functions (e.g., Lipschitzness, strong convexity, and smoothness). On the other hand, emergence of datasets of an unprecedented size, demands the development of novel and more efficient optimization algorithms to tackle large-scale learning problems. The overarching goal of this thesis is to reassess the smoothness of loss functions in statistical learning, sequential prediction/online learning, and stochastic optimization and explicate its consequences. In particular we examine how smoothness of loss function could be beneficial or detrimental in these settings in terms of sample complexity, statistical consistency, regret analysis, and convergence rate, and investigate how smoothness can be leveraged to devise more efficient learning algorithms.Comment: Ph.D. Thesi
    • …
    corecore