5 research outputs found

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Analyzing cross-talk between superimposed signals: Vector norm dependent hidden Markov models and applications

    Full text link
    We propose and investigate a hidden Markov model (HMM) for the analysis of aggregated, super-imposed two-state signal recordings. A major motivation for this work is that often these recordings cannot be observed individually but only their superposition. Among others, such models are in high demand for the understanding of cross-talk between ion channels, where each single channel might take two different states which cannot be measured separately. As an essential building block we introduce a parametrized vector norm dependent Markov chain model and characterize it in terms of permutation invariance as well as conditional independence. This leads to a hidden Markov chain "sum" process which can be used for analyzing aggregated two-state signal observations within a HMM. Additionally, we show that the model parameters of the vector norm dependent Markov chain are uniquely determined by the parameters of the "sum" process and are therefore identifiable. Finally, we provide algorithms to estimate the parameters and apply our methodology to real-world ion channel data measurements, where we show competitive gating.Comment: An R package can be found at: https://github.com/ljvanegas/VN

    Indexing and knowledge discovery of gaussian mixture models and multiple-instance learning

    Get PDF
    Due to the increasing quantity and variety of generated and stored data, the manual and automatic analysis becomes a more and more challenging task in many modern applications, like biometric identification and content-based image retrieval. In this thesis, we consider two very typical, related inherent structures of objects: Multiple-Instance (MI) objects and Gaussian Mixture Models (GMM). In both approaches, each object is represented by a set. For MI, each object is a set of vectors from a multi-dimensional space. For GMM, each object is a set of multi-variate Gaussian distribution functions, providing the ability to approximate arbitrary distributions in a concise way. Both approaches are very powerful and natural as they allow to express (1) that an object is additively composed from several components or (2) that an object may have several different, alternative kinds of behavior. Thus we can model e.g. an image which may depict a set of different things (1). Likewise, we can model a sports player who has performed differently at different games (2). We can use GMM to approximate MI objects and vice versa. Both ways of approximation can be appealing because GMM are more concise whereas for MI objects the single components are less complex. A similarity measure quantifies similarities between two objects to assess how much alike these objects are. On this basis, indexing and similarity search play essential roles in data mining, providing efficient and/or indispensable supports for a variety of algorithms such as classification and clustering. This thesis aims to solve challenges in the indexing and knowledge discovery of complex data using MI objects and GMM. For the indexing of GMM, there are several techniques available, including universal index structures and GMM-specific methods. However, the well-known approaches either suffer from poor performance or have too many limitations. To make use of the parameterized properties of GMM and tackle the problem of potential unequal length of components, we propose the Gaussian Components based Index (GCI) for efficient queries on GMM. GCI decomposes GMM into their components, and stores the n-lets of Gaussian combinations that have uniform length of parameter vectors in traditional index structures. We introduce an efficient pruning strategy to filter unqualified GMM using the so-called Matching Probability (MP) as the similarity measure. MP sums up the joint probabilities of two objects all over the space. GCI achieves better performance than its competitors on both synthetic and real-world data. To further increase its efficiency, we propose a strategy to store GMM components in a normalized way. This strategy improves the ability of filtering unqualified GMM. Based on the normalized transformation, we derive a set of novel similarity measures for GMM. Since MP is not a metric (i.e., a symmetric, positive definite distance function guaranteeing the triangle inequality), which would be essential for the application of various analysis techniques, we introduce Infinite Euclidean Distance (IED) for probability distribution functions, a metric with a closed-form expression for GMM. IED allows us to store GMM in well-known metric trees like the Vantage-Point tree or M-tree, which facilitate similarity search in sublinear time by exploiting the triangle inequality. Moreover, analysis techniques that require the properties of a metric (e.g. Multidimensional Scaling) can be applied on GMM with IED. For MI objects which are not well-approximated by GMM, we introduce the potential densities of instances for the representation of MI objects. Based on that, two joint Gaussian based measures are proposed for MI objects and we extend GCI on MI objects for efficient queries as well. To sum up, we propose in this thesis a number of novel similarity measures and novel indexing techniques for GMM and MI objects, enabling efficient queries and knowledge discovery on complex data. In a thorough theoretic analysis as well as extensive experiments we demonstrate the superiority of our approaches over the state-of-the-art with respect to the run-time efficiency and the quality of the result.Angesichts der steigenden Quantität und Vielfalt der generierten und gespeicherten Daten werden manuelle und automatisierte Analysen in vielen modernen Anwendungen eine zunehmend anspruchsvolle Aufgabe, wie z.B. biometrische Identifikation und inhaltbasierter Bildzugriff. In dieser Arbeit werden zwei sehr typische und relevante inhärente Strukturen von Objekten behandelt: Multiple-Instance-Objects (MI) und Gaussian Mixture Models (GMM). In beiden Anwendungsfällen wird das Objekt in Form einer Menge dargestellt. Bei MI besteht jedes Objekt aus einer Menge von Vektoren aus einem multidimensionalen Raum. Bei GMM wird jedes Objekt durch eine Menge von multivariaten normalverteilten Dichtefunktionen repräsentiert. Dies bietet die Möglichkeit, beliebige Wahrscheinlichkeitsverteilungen in kompakter Form zu approximieren. Beide Ansätze sind sehr leistungsfähig, denn sie basieren auf einfachsten Ideen: (1) entweder besteht ein Objekt additiv aus mehreren Komponenten oder (2) ein Objekt hat unterschiedliche alternative Verhaltensarten. Dies ermöglicht es uns z.B. ein Bild zu repräsentieren, welches unterschiedliche Objekte und Szenen zeigt (1). In gleicher Weise können wir einen Sportler modellieren, der bei verschiedenen Wettkämpfen unterschiedliche Leistungen gezeigt hat (2). Wir können MI-Objekte durch GMM approximieren und auch der umgekehrte Weg ist möglich. Beide Vorgehensweisen können sehr ansprechend sein, da GMM im Vergleich zu MI kompakter sind, wogegen in MI-Objekten die einzelnen Komponenten weniger Komplexität aufweisen. Ein ähnlichkeitsmaß dient der Quantifikation der Gemeinsamkeit zwischen zwei Objekten. Darauf basierend spielen Indizierung und ähnlichkeitssuche eine wesentliche Rolle für die effiziente Implementierung von einer Vielzahl von Klassifikations- und Clustering-Algorithmen im Bereich des Data Minings. Ziel dieser Arbeit ist es, die Herausforderungen bei Indizierung und Wissensextraktion von komplexen Daten unter Verwendung von MI Objekten und GMM zu bewältigen. Für die Indizierung der GMM stehen verschiedene universelle und GMM-spezifische Indexstrukuren zur Verfügung. Jedoch leiden solche bekannten Ansätze unter schwacher Leistung oder zu vielen Einschränkungen. Um die parametrisieren Eigenschaften der GMM auszunutzen und dem Problem der möglichen ungleichen Komponentenlänge entgegenzuwirken, präsentieren wir das Verfahren Gaussian Components based Index (GCI), welches effizienten Abfrage auf GMM ermöglicht. GCI zerlegt dabei ein GMM in Parameterkomponenten und speichert alle möglichen Kombinationen mit einheitlicher Vektorlänge in traditionellen Indexstrukturen. Wir stellen ein effizientes Pruningverfahren vor, um ungeeignete GMM unter Verwendung der sogenannten Matching Probability (MP) als ähnlichkeitsma\ss auszufiltern. MP errechnet die Summe der gemeinsamen Wahrscheinlichkeit zweier Objekte aus dem gesamten Raum. CGI erzielt bessere Leistung als konkurrierende Verfahren, sowohl in Bezug auf synthetische, als auch auf reale Datensätze. Um ihre Effizienz weiter zu verbessern, stellen wir eine Strategie zur Speicherung der GMM-Komponenten in normalisierter Form vor. Diese Strategie verbessert die Fähigkeit zum Ausfiltern ungeeigneter GMM. Darüber hinaus leiten wir, basierend auf dieser Transformation, neuartige ähnlichkeitsmaße für GMM her. Da MP keine Metrik (d.h. eine symmetrische, positiv definite Distanzfunktion, die die Dreiecksungleichung garantiert) ist, dies jedoch unentbehrlich für die Anwendung mehrerer Analysetechniken ist, führen wir Infinite Euclidean Distance (IED) ein, ein Metrik mit geschlossener Ausdrucksform für GMM. IED erlaubt die Speicherung der GMM in Metrik-Bäumen wie z.B. Vantage-Point Trees oder M-Trees, die die ähnlichkeitssuche in sublinear Zeit mit Hilfe der Dreiecksungleichung erleichtert. Außerdem können Analysetechniken, die die Eigenschaften einer Metrik erfordern (z.B. Multidimensional Scaling), auf GMM mit IED angewandt werden. Für MI-Objekte, die mit GMM nicht in außreichender Qualität approximiert werden können, stellen wir Potential Densities of Instances vor, um MI-Objekte zu repräsentieren. Darauf beruhend werden zwei auf multivariater Gaußverteilungen basierende Maße für MI-Objekte eingeführt. Außerdem erweitern wir GCI für MI-Objekte zur effizienten Abfragen. Zusammenfassend haben wir in dieser Arbeit mehrere neuartige ähnlichkeitsmaße und Indizierungstechniken für GMM- und MI-Objekte vorgestellt. Diese ermöglichen effiziente Abfragen und die Wissensentdeckung in komplexen Daten. Durch eine gründliche theoretische Analyse und durch umfangreiche Experimente demonstrieren wir die überlegenheit unseres Ansatzes gegenüber anderen modernen Ansätzen bezüglich ihrer Laufzeit und Qualität der Resultate

    Learning of Surgical Gestures for Robotic Minimally Invasive Surgery Using Dynamic Movement Primitives and Latent Variable Models

    Get PDF
    Full and partial automation of Robotic Minimally Invasive Surgery holds significant promise to improve patient treatment, reduce recovery time, and reduce the fatigue of the surgeons. However, to accomplish this ambitious goal, a mathematical model of the intervention is needed. In this thesis, we propose to use Dynamic Movement Primitives (DMPs) to encode the gestures a surgeon has to perform to achieve a task. DMPs allow to learn a trajectory, thus imitating the dexterity of the surgeon, and to execute it while allowing to generalize it both spatially (to new starting and goal positions) and temporally (to different speeds of executions). Moreover, they have other desirable properties that make them well suited for surgical applications, such as online adaptability, robustness to perturbations, and the possibility to implement obstacle avoidance. We propose various modifications to improve the state-of-the-art of the framework, as well as novel methods to handle obstacles. Moreover, we validate the usage of DMPs to model gestures by automating a surgical-related task and using DMPs as the low-level trajectory generator. In the second part of the thesis, we introduce the problem of unsupervised segmentation of tasks' execution in gestures. We will introduce latent variable models to tackle the problem, proposing further developments to combine such models with the DMP theory. We will review the Auto-Regressive Hidden Markov Model (AR-HMM) and test it on surgical-related datasets. Then, we will propose a generalization of the AR-HMM to general, non-linear, dynamics, showing that this results in a more accurate segmentation, with a less severe over-segmentation. Finally, we propose a further generalization of the AR-HMM that aims at integrating a DMP-like dynamic into the latent variable model
    corecore