10,063 research outputs found

    Causal Dependence Tree Approximations of Joint Distributions for Multiple Random Processes

    Full text link
    We investigate approximating joint distributions of random processes with causal dependence tree distributions. Such distributions are particularly useful in providing parsimonious representation when there exists causal dynamics among processes. By extending the results by Chow and Liu on dependence tree approximations, we show that the best causal dependence tree approximation is the one which maximizes the sum of directed informations on its edges, where best is defined in terms of minimizing the KL-divergence between the original and the approximate distribution. Moreover, we describe a low-complexity algorithm to efficiently pick this approximate distribution.Comment: 9 pages, 15 figure

    Submodular Inference of Diffusion Networks from Multiple Trees

    Full text link
    Diffusion and propagation of information, influence and diseases take place over increasingly larger networks. We observe when a node copies information, makes a decision or becomes infected but networks are often hidden or unobserved. Since networks are highly dynamic, changing and growing rapidly, we only observe a relatively small set of cascades before a network changes significantly. Scalable network inference based on a small cascade set is then necessary for understanding the rapidly evolving dynamics that govern diffusion. In this article, we develop a scalable approximation algorithm with provable near-optimal performance based on submodular maximization which achieves a high accuracy in such scenario, solving an open problem first introduced by Gomez-Rodriguez et al (2010). Experiments on synthetic and real diffusion data show that our algorithm in practice achieves an optimal trade-off between accuracy and running time.Comment: To appear in the 29th International Conference on Machine Learning (ICML), 2012. Website: http://www.stanford.edu/~manuelgr/network-inference-multitree

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299
    corecore