56,885 research outputs found

    Efficient Spatial Keyword Search in Trajectory Databases

    Full text link
    An increasing amount of trajectory data is being annotated with text descriptions to better capture the semantics associated with locations. The fusion of spatial locations and text descriptions in trajectories engenders a new type of top-kk queries that take into account both aspects. Each trajectory in consideration consists of a sequence of geo-spatial locations associated with text descriptions. Given a user location λ\lambda and a keyword set ψ\psi, a top-kk query returns kk trajectories whose text descriptions cover the keywords ψ\psi and that have the shortest match distance. To the best of our knowledge, previous research on querying trajectory databases has focused on trajectory data without any text description, and no existing work has studied such kind of top-kk queries on trajectories. This paper proposes one novel method for efficiently computing top-kk trajectories. The method is developed based on a new hybrid index, cell-keyword conscious B+^+-tree, denoted by \cellbtree, which enables us to exploit both text relevance and location proximity to facilitate efficient and effective query processing. The results of our extensive empirical studies with an implementation of the proposed algorithms on BerkeleyDB demonstrate that our proposed methods are capable of achieving excellent performance and good scalability.Comment: 12 page

    Scaling Monte Carlo Tree Search on Intel Xeon Phi

    Full text link
    Many algorithms have been parallelized successfully on the Intel Xeon Phi coprocessor, especially those with regular, balanced, and predictable data access patterns and instruction flows. Irregular and unbalanced algorithms are harder to parallelize efficiently. They are, for instance, present in artificial intelligence search algorithms such as Monte Carlo Tree Search (MCTS). In this paper we study the scaling behavior of MCTS, on a highly optimized real-world application, on real hardware. The Intel Xeon Phi allows shared memory scaling studies up to 61 cores and 244 hardware threads. We compare work-stealing (Cilk Plus and TBB) and work-sharing (FIFO scheduling) approaches. Interestingly, we find that a straightforward thread pool with a work-sharing FIFO queue shows the best performance. A crucial element for this high performance is the controlling of the grain size, an approach that we call Grain Size Controlled Parallel MCTS. Our subsequent comparing with the Xeon CPUs shows an even more comprehensible distinction in performance between different threading libraries. We achieve, to the best of our knowledge, the fastest implementation of a parallel MCTS on the 61 core Intel Xeon Phi using a real application (47 relative to a sequential run).Comment: 8 pages, 9 figure

    Bandit Algorithms for Tree Search

    Get PDF
    Bandit based methods for tree search have recently gained popularity when applied to huge trees, e.g. in the game of go (Gelly et al., 2006). The UCT algorithm (Kocsis and Szepesvari, 2006), a tree search method based on Upper Confidence Bounds (UCB) (Auer et al., 2002), is believed to adapt locally to the effective smoothness of the tree. However, we show that UCT is too ``optimistic'' in some cases, leading to a regret O(exp(exp(D))) where D is the depth of the tree. We propose alternative bandit algorithms for tree search. First, a modification of UCT using a confidence sequence that scales exponentially with the horizon depth is proven to have a regret O(2^D \sqrt{n}), but does not adapt to possible smoothness in the tree. We then analyze Flat-UCB performed on the leaves and provide a finite regret bound with high probability. Then, we introduce a UCB-based Bandit Algorithm for Smooth Trees which takes into account actual smoothness of the rewards for performing efficient ``cuts'' of sub-optimal branches with high confidence. Finally, we present an incremental tree search version which applies when the full tree is too big (possibly infinite) to be entirely represented and show that with high probability, essentially only the optimal branches is indefinitely developed. We illustrate these methods on a global optimization problem of a Lipschitz function, given noisy data
    corecore