4,013,505 research outputs found

    Is demagnetization an efficient optimization method?

    Full text link
    Demagnetization, commonly employed to study ferromagnets, has been proposed as the basis for an optimization tool, a method to find the ground state of a disordered system. Here we present a detailed comparison between the ground state and the demagnetized state in the random field Ising model, combing exact results in d=1d=1 and numerical solutions in d=3d=3. We show that there are important differences between the two states that persist in the thermodynamic limit and thus conclude that AC demagnetization is not an efficient optimization method.Comment: 2 pages, 1 figur

    Efficient Recursion Method for Inverting Overlap Matrix

    Full text link
    A new O(N) algorithm based on a recursion method, in which the computational effort is proportional to the number of atoms N, is presented for calculating the inverse of an overlap matrix which is needed in electronic structure calculations with the the non-orthogonal localized basis set. This efficient inverting method can be incorporated in several O(N) methods for diagonalization of a generalized secular equation. By studying convergence properties of the 1-norm of an error matrix for diamond and fcc Al, this method is compared to three other O(N) methods (the divide method, Taylor expansion method, and Hotelling's method) with regard to computational accuracy and efficiency within the density functional theory. The test calculations show that the new method is about one-hundred times faster than the divide method in computational time to achieve the same convergence for both diamond and fcc Al, while the Taylor expansion method and Hotelling's method suffer from numerical instabilities in most cases.Comment: 17 pages and 4 figure

    Efficient method for probabilistic fire safety engineering

    Get PDF
    A growing interest exists within the fire safety community for the topics of risk and reliability. However, due to the high computational requirements of most calculation models, traditional Monte Carlo methods are in general too time consuming for practical applications. In this paper a computationally very efficient methodology is for the first time applied to structural fire safety. The methodology allows estimating the probability density function which describes the uncertain response of the fire exposed structure or structural member, while requiring only a very limited number of model evaluations. The application of the method to structural fire safety is illustrated by two examples in the area of concrete elements exposed to fire

    A Neural Network Method for Efficient Vegetation Mapping

    Full text link
    This paper describes the application of a neural network method designed to improve the efficiency of map production from remote sensing data. Specifically, the ARTMAP neural network produces vegetation maps of the Sierra National Forest, in Northern California, using Landsat Thematic Mapper (TM) data. In addition to spectral values, the data set includes terrain and location information for each pixel. The maps produced by ARTMAP are of comparable accuracy to maps produced by a currently used method, which requires expert knowledge of the area as well as extensive manual editing. In fact, once field observations of vegetation classes had been collected for selected sites, ARTMAP took only a few hours to accomplish a mapping task that had previously taken many months. The ARTMAP network features fast on-line learning, so the system can be updated incrementally when new field observations arrive, without the need for retraining on the entire data set. In addition to maps that identify lifeform and Calveg species, ARTMAP produces confidence maps, which indicate where errors are most likely to occur and which can, therefore, be used to guide map editing

    An efficient method for DNA extraction from Cladosporioid fungi

    Get PDF
    We developed an efficient method for DNA extraction from Cladosporioid fungi, which are important fungal plant pathogens. The cell wall of Cladosporioid fungi is often melanized, which makes it difficult to extract DNA from their cells. In order to overcome this we grew these fungi for three days on agar plates and extracted DNA from mycelium mats after manual or electric homogenization. High-quality DNA was isolated, with an A260/A280 ratio ranging between 1.6 and 2.0. Isolated genomic DNA was efficiently digested with restriction enzymes and produced distinct banding patterns on agarose gels for the different Cladosporium species. Clear DNA fragments from the isolated DNA were amplified by PCR using small and large subunit rDNA primers, demonstrating that this method provides DNA of sufficiently high quality for molecular analyse

    Balltracking: an highly efficient method for tracking flow fields

    Get PDF
    We present a method for tracking solar photospheric flows that is highly efficient, and demonstrate it using high resolution MDI continuum images. The method involves making a surface from the photospheric granulation data, and allowing many small floating tracers or balls to be moved around by the evolving granulation pattern. The results are tested against synthesised granulation with known flow fields and compared to the results produced by Local Correlation tracking (LCT). The results from this new method have similar accuracy to those produced by LCT. We also investigate the maximum spatial and temporal resolution of the velocity field that it is possible to extract, based on the statistical properties of the granulation data. We conclude that both methods produce results that are close to the maximum resolution possible from granulation data. The code runs very significantly faster than our similarly optimised LCT code, making real time applications on large data sets possible. The tracking method is not limited to photospheric flows, and will also work on any velocity field where there are visible moving features of known scale length

    Method for Computationally Efficient Design of Dielectric Laser Accelerators

    Get PDF
    Dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of only two full-field electromagnetic simulations, the original and adjoint. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.Comment: 13 pages, 4 figure

    ETP-Mine: An Efficient Method for Mining Transitional Patterns

    Full text link
    A Transaction database contains a set of transactions along with items and their associated timestamps. Transitional patterns are the patterns which specify the dynamic behavior of frequent patterns in a transaction database. To discover transitional patterns and their significant milestones, first we have to extract all frequent patterns and their supports using any frequent pattern generation algorithm. These frequent patterns are used in the generation of transitional patterns. The existing algorithm (TP-Mine) generates frequent patterns, some of which cannot be used in generation of transitional patterns. In this paper, we propose a modification to the existing algorithm, which prunes the candidate items to be used in the generation of frequent patterns. This method drastically reduces the number of frequent patterns which are used in discovering transitional patterns. Extensive simulation test is done to evaluate the proposed method.Comment: 11 page
    corecore