884,477 research outputs found

    Information-based objective functions for active data selection

    Get PDF
    Learning can be made more efficient if we can actively select particularly salient data points. Within a Bayesian learning framework, objective functions are discussed that measure the expected informativeness of candidate measurements. Three alternative specifications of what we want to gain information about lead to three different criteria for data selection. All these criteria depend on the assumption that the hypothesis space is correct, which may prove to be their main weakness

    On Measure Concentration of Random Maximum A-Posteriori Perturbations

    Full text link
    The maximum a-posteriori (MAP) perturbation framework has emerged as a useful approach for inference and learning in high dimensional complex models. By maximizing a randomly perturbed potential function, MAP perturbations generate unbiased samples from the Gibbs distribution. Unfortunately, the computational cost of generating so many high-dimensional random variables can be prohibitive. More efficient algorithms use sequential sampling strategies based on the expected value of low dimensional MAP perturbations. This paper develops new measure concentration inequalities that bound the number of samples needed to estimate such expected values. Applying the general result to MAP perturbations can yield a more efficient algorithm to approximate sampling from the Gibbs distribution. The measure concentration result is of general interest and may be applicable to other areas involving expected estimations

    Efficient Optimization of Performance Measures by Classifier Adaptation

    Full text link
    In practical applications, machine learning algorithms are often needed to learn classifiers that optimize domain specific performance measures. Previously, the research has focused on learning the needed classifier in isolation, yet learning nonlinear classifier for nonlinear and nonsmooth performance measures is still hard. In this paper, rather than learning the needed classifier by optimizing specific performance measure directly, we circumvent this problem by proposing a novel two-step approach called as CAPO, namely to first train nonlinear auxiliary classifiers with existing learning methods, and then to adapt auxiliary classifiers for specific performance measures. In the first step, auxiliary classifiers can be obtained efficiently by taking off-the-shelf learning algorithms. For the second step, we show that the classifier adaptation problem can be reduced to a quadratic program problem, which is similar to linear SVMperf and can be efficiently solved. By exploiting nonlinear auxiliary classifiers, CAPO can generate nonlinear classifier which optimizes a large variety of performance measures including all the performance measure based on the contingency table and AUC, whilst keeping high computational efficiency. Empirical studies show that CAPO is effective and of high computational efficiency, and even it is more efficient than linear SVMperf.Comment: 30 pages, 5 figures, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    Similarity Learning for High-Dimensional Sparse Data

    Get PDF
    A good measure of similarity between data points is crucial to many tasks in machine learning. Similarity and metric learning methods learn such measures automatically from data, but they do not scale well respect to the dimensionality of the data. In this paper, we propose a method that can learn efficiently similarity measure from high-dimensional sparse data. The core idea is to parameterize the similarity measure as a convex combination of rank-one matrices with specific sparsity structures. The parameters are then optimized with an approximate Frank-Wolfe procedure to maximally satisfy relative similarity constraints on the training data. Our algorithm greedily incorporates one pair of features at a time into the similarity measure, providing an efficient way to control the number of active features and thus reduce overfitting. It enjoys very appealing convergence guarantees and its time and memory complexity depends on the sparsity of the data instead of the dimension of the feature space. Our experiments on real-world high-dimensional datasets demonstrate its potential for classification, dimensionality reduction and data exploration.Comment: 14 pages. Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS 2015). Matlab code: https://github.com/bellet/HDS

    Classical Verification of Quantum Computations

    Get PDF
    We present the first protocol allowing a classical computer to interactively verify the result of an efficient quantum computation. We achieve this by constructing a measurement protocol, which enables a classical verifier to use a quantum prover as a trusted measurement device. The protocol forces the prover to behave as follows: the prover must construct an n qubit state of his choice, measure each qubit in the Hadamard or standard basis as directed by the verifier, and report the measurement results to the verifier. The soundness of this protocol is enforced based on the assumption that the learning with errors problem is computationally intractable for efficient quantum machines

    Toward Optimal Feature Selection in Naive Bayes for Text Categorization

    Full text link
    Automated feature selection is important for text categorization to reduce the feature size and to speed up the learning process of classifiers. In this paper, we present a novel and efficient feature selection framework based on the Information Theory, which aims to rank the features with their discriminative capacity for classification. We first revisit two information measures: Kullback-Leibler divergence and Jeffreys divergence for binary hypothesis testing, and analyze their asymptotic properties relating to type I and type II errors of a Bayesian classifier. We then introduce a new divergence measure, called Jeffreys-Multi-Hypothesis (JMH) divergence, to measure multi-distribution divergence for multi-class classification. Based on the JMH-divergence, we develop two efficient feature selection methods, termed maximum discrimination (MDMD) and MD−χ2MD-\chi^2 methods, for text categorization. The promising results of extensive experiments demonstrate the effectiveness of the proposed approaches.Comment: This paper has been submitted to the IEEE Trans. Knowledge and Data Engineering. 14 pages, 5 figure
    • …
    corecore