3,500 research outputs found

    Efficient identity-based broadcast encryption without random oracles.

    Get PDF
    We propose a new efficient identity-based broadcast encryption scheme without random oracles and prove that it achieves selective identity, chosen plaintext security. Our scheme is constructed based on bilinear Diffie-Hellman inversion assumption and it is a good efficient hybrid encryption scheme, which achieves O(1)-size ciphertexts, public parameters and constant size private keys. In our scheme, either ciphertexts or public parameters has no relation with the number of receivers, moreover, both the encryption and decryption only require one pairing computation. Compared with other identity-based broadcast encryption schemes, our scheme has comparable properties, but with a better efficiency

    Efficient Identity-Based Encryption Without Random Oracles

    Get PDF
    We present the first efficient Identity-Based Encryption (IBE) scheme that is fully secure without random oracles. We first present our IBE construction and reduce the security of our scheme to the decisional Bilinear Diffie-Hellman (BDH) problem. Additionally, we show that our techniques can be used to build a new signature scheme that is secure under the computational Diffie-Hellman assumption without random oracles

    Constant-Size Hierarchical Identity-Based Signature/Signcryption without Random Oracles

    Get PDF
    We construct the first constant-size hierarchical identity-based signature (HIBS) without random oracles - the signature size is O(λs)O(\lambda_s) bits, where λs\lambda_s is the security parameter, and it is independent of the number of levels in the hierarchy. We observe that an efficient hierarchical identity-based signcryption (HIBSC) scheme without random oracles can be compositioned from our HIBS and Boneh, Boyen, and Goh\u27s hierarchical identity-based encryption (HIBE). We further optimize it to a constant-factor efficiency improvement. This is the first constant-size HIBSC without random oracles

    Identity-Based Revocation from Subset Difference Methods under Simple Assumptions

    Get PDF
    Identity-based revocation (IBR) is a specific kind of broadcast encryption that can effectively send a ciphertext to a set of receivers. In IBR, a ciphertext is associated with a set of revoked users instead of a set of receivers and the maximum number of users in the system can be an exponential value in the security parameter. In this paper, we reconsider the general method of Lee, Koo, Lee, and Park (ESORICS 2014) that constructs a public-key revocation (PKR) scheme by combining the subset difference (SD) method of Naor, Naor, and Lotspiech (CRYPTO 2001) and a single revocation encryption (SRE) scheme. Lee et al. left it as an open problem to construct an SRE scheme under the standard assumption without random oracles. In this work, we first propose a selectively secure SRE scheme under the standard assumption without random oracles. We also propose a fully secure SRE scheme under simple static assumptions without random oracles. Next, we present an efficient IBR scheme derived from the SD method and our SRE scheme. The security of our IBR scheme depends on that of the underlying SRE scheme. Finally, we implemented our SRE and IBR schemes and measured the performance

    Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security

    Get PDF
    Recently, a variant of proxy re-encryption, named conditional proxy re-encryption (C-PRE), has been introduced. Compared with traditional proxy re-encryption, C-PRE enables the delegator to implement fine-grained delegation of decryption rights, and thus is more useful in many applications. In this paper, based on a careful observation on the existing definitions and security notions for C-PRE, we reformalize more rigorous definition and security notions for C-PRE. We further propose a more efficient C-PRE scheme, and prove its chosenciphertext security under the decisional bilinear Diffie-Hellman (DBDH) assumption in the random oracle model. In addition, we point out that a recent C-PRE scheme fails to achieve the chosen-ciphertext security
    • …
    corecore