90,005 research outputs found

    Nonparametric Identification and Estimation of Multivariate Mixtures

    Get PDF
    We study nonparametric identifiability of finite mixture models of k-variate data with M subpopulations, in which the components of the data vector are independent conditional on belonging to a subpopulation. We provide a sufficient condition for nonparametrically identifying M subpopulations when k>=3. Our focus is on the relationship between the number of values the components of the data vector can take on, and the number of identifiable subpopulations. Intuition would suggest that if the data vector can take many different values, then combining information from these different values helps identification. Hall and Zhou (2003) show, however, when k=2, two-component finite mixture models are not nonparametrically identifiable regardless of the number of the values the data vector can take. When k>=3, there emerges a link between the variation in the data vector, and the number of identifiable subpopulations: the number of identifiable subpopulations increases as the data vector takes on additional (different) values. This points to the possibility of identifying many components even when k=3, if the data vector has a continuously distributed element. Our identification method is constructive, and leads to an estimation strategy. It is not as efficient as the MLE, but can be used as the initial value of the optimization algorithm in computing the MLE. We also provide a sufficient condition for identifying the number of nonparametrically identifiable components, and develop a method for statistically testing and consistently estimating the number of nonparametrically identifiable components. We extend these procedures to develop a test for the number of components in binomial mixtures.finite mixture, binomial mixture, model selection, number of components, rank estimation

    Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models

    Get PDF
    This paper develops nonparametric estimation for discrete choice models based on the mixed multinomial logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an unknown distribution GG. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution GG, to estimate choice probabilities. We provide an important theoretical support for the use of the proposed methodology by investigating consistency of the posterior distribution for a general nonparametric prior on the mixing distribution. Consistency is defined according to an L1L_1-type distance on the space of choice probabilities and is achieved by extending to a regression model framework a recent approach to strong consistency based on the summability of square roots of prior probabilities. Moving to estimation, slightly different techniques for non-panel and panel data models are discussed. For practical implementation, we describe efficient and relatively easy-to-use blocked Gibbs sampling procedures. These procedures are based on approximations of the random probability measure by classes of finite stick-breaking processes. A simulation study is also performed to investigate the performance of the proposed methods.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ233 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Nonparametric Estimation of Multi-View Latent Variable Models

    Full text link
    Spectral methods have greatly advanced the estimation of latent variable models, generating a sequence of novel and efficient algorithms with strong theoretical guarantees. However, current spectral algorithms are largely restricted to mixtures of discrete or Gaussian distributions. In this paper, we propose a kernel method for learning multi-view latent variable models, allowing each mixture component to be nonparametric. The key idea of the method is to embed the joint distribution of a multi-view latent variable into a reproducing kernel Hilbert space, and then the latent parameters are recovered using a robust tensor power method. We establish that the sample complexity for the proposed method is quadratic in the number of latent components and is a low order polynomial in the other relevant parameters. Thus, our non-parametric tensor approach to learning latent variable models enjoys good sample and computational efficiencies. Moreover, the non-parametric tensor power method compares favorably to EM algorithm and other existing spectral algorithms in our experiments
    • …
    corecore