30,193 research outputs found

    Weighted Heuristic Ensemble of Filters

    Get PDF
    Feature selection has become increasingly important in data mining in recent years due to the rapid increase in the dimensionality of big data. However, the reliability and consistency of feature selection methods (filters) vary considerably on different data and no single filter performs consistently well under various conditions. Therefore, feature selection ensemble has been investigated recently to provide more reliable and effective results than any individual one but all the existing feature selection ensemble treat the feature selection methods equally regardless of their performance. In this paper, we present a novel framework which applies weighted feature selection ensemble through proposing a systemic way of adding different weights to the feature selection methods-filters. Also, we investigate how to determine the appropriate weight for each filter in an ensemble. Experiments based on ten benchmark datasets show that theoretically and intuitively adding more weight to ‘good filters’ should lead to better results but in reality it is very uncertain. This assumption was found to be correct for some examples in our experiment. However, for other situations, filters which had been assumed to perform well showed bad performance leading to even worse results. Therefore adding weight to filters might not achieve much in accuracy terms, in addition to increasing complexity, time consumption and clearly decreasing the stability

    A hybrid evaluation approach and guidance for mHealth education applications

    Get PDF
    © Springer International Publishing AG 2018. Mobile health education applications (MHEAs) are used to support different users. However, although these applications are increasing in number, there is no effective evaluation framework to measure their usability and thus save effort and time for their many user groups. This paper outlines a useful framework for evaluating MHEAs, together with particular evaluation metrics: an efficient hybrid of selected heuristic evaluation (HE) and usability evaluation (UE) factors to enable the determination of the usefulness and usability of MHEAs. We also propose a guidance tool to help stakeholders choose the most suitable MHEA. The outcome of this framework is envisioned as meeting the requirements of different users, in addition to enhancing the development of MHEAs using software engineering approaches by creating new and more effective evaluation techniques. Finally, we present qualitative and quantitative results for the framework when used with MHEAs

    Measuring reproducibility of high-throughput experiments

    Full text link
    Reproducibility is essential to reliable scientific discovery in high-throughput experiments. In this work we propose a unified approach to measure the reproducibility of findings identified from replicate experiments and identify putative discoveries using reproducibility. Unlike the usual scalar measures of reproducibility, our approach creates a curve, which quantitatively assesses when the findings are no longer consistent across replicates. Our curve is fitted by a copula mixture model, from which we derive a quantitative reproducibility score, which we call the "irreproducible discovery rate" (IDR) analogous to the FDR. This score can be computed at each set of paired replicate ranks and permits the principled setting of thresholds both for assessing reproducibility and combining replicates. Since our approach permits an arbitrary scale for each replicate, it provides useful descriptive measures in a wide variety of situations to be explored. We study the performance of the algorithm using simulations and give a heuristic analysis of its theoretical properties. We demonstrate the effectiveness of our method in a ChIP-seq experiment.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS466 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore