884 research outputs found

    Direct maximum parsimony phylogeny reconstruction from genotype data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes.</p> <p>Results</p> <p>In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes.</p> <p>Conclusion</p> <p>Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.</p

    A Preprocessing Procedure for Haplotype Inference by Pure Parsimony

    Get PDF
    Haplotype data is especially important in the study of complex diseases since it contains more information than genotype data. However, obtaining haplotype data is technically difficult and expensive. Computational methods have proved to be an effective way of inferring haplotype data from genotype data. One of these methods, the haplotype inference by pure parsimony approach (HIPP), casts the problem as an optimization problem and as such has been proved to be NP-hard. We have designed and developed a new preprocessing procedure for this problem. Our proposed algorithm works with groups of haplotypes rather than individual haplotypes. It iterates searching and deleting haplotypes that are not helpful in order to find the optimal solution. This preprocess can be coupled with any of the current solvers for the HIPP that need to preprocess the genotype data. In order to test it, we have used two state-of-the-art solvers, RTIP and GAHAP, and simulated and real HapMap data. Due to the computational time and memory reduction caused by our preprocess, problem instances that were previously unaffordable can be now efficiently solved

    SHIELD: Secure Haplotype Imputation Employing Local Differential Privacy

    Full text link
    We introduce Secure Haplotype Imputation Employing Local Differential privacy (SHIELD), a program for accurately estimating the genotype of target samples at markers that are not directly assayed by array-based genotyping platforms while preserving the privacy of donors to public reference panels. At the core of SHIELD is the Li-Stephens model of genetic recombination, according to which genomic information is comprised of mosaics of ancestral haplotype fragments that coalesce via a Markov random field. We use the standard forward-backward algorithm for inferring the ancestral haplotypes of target genomes, and hence the most likely genotype at unobserved sites, using a reference panel of template haplotypes whose privacy is guaranteed by the randomized response technique from differential privacy

    Haplotype inference in general pedigrees with two sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic disease studies investigate relationships between changes in chromosomes and genetic diseases. Single haplotypes provide useful information for these studies but extracting single haplotypes directly by biochemical methods is expensive. A computational method to infer haplotypes from genotype data is therefore important. We investigate the problem of computing the minimum number of recombination events for general pedigrees with two sites for all members.</p> <p>Results</p> <p>We show that this NP-hard problem can be parametrically reduced to the Bipartization by Edge Removal problem and therefore can be solved by an <it>O</it>(2<it><sup>k</sup></it> · <it>n</it><sup>2</sup>) exact algorithm, where <it>n</it> is the number of members and <it>k</it> is the number of recombination events.</p> <p>Conclusions</p> <p>Our work can therefore be useful for genetic disease studies to track down how changes in haplotypes such as recombinations relate to genetic disease.</p

    Algorithms for Analysis of Heterogeneous Cancer and Viral Populations Using High-Throughput Sequencing Data

    Get PDF
    Next-generation sequencing (NGS) technologies experienced giant leaps in recent years. Short read samples reach millions of reads, and the number of samples has been growing enormously in the wake of the COVID-19 pandemic. This data can expose essential aspects of disease transmission and development and reveal the key to its treatment. At the same time, single-cell sequencing saw the progress of getting from dozens to tens of thousands of cells per sample. These technological advances bring new challenges for computational biology and require the development of scalable, robust methods to deal with a wide range of problems varying from epidemiology to cancer studies. The first part of this work is focused on processing virus NGS data. It proposes algorithms that can facilitate the initial data analysis steps by filtering genetically related sequencing and the tool investigating intra-host virus diversity vital for biomedical research and epidemiology. The second part addresses single-cell data in cancer studies. It develops evolutionary cancer models involving new quantitative parameters of cancer subclones to understand the underlying processes of cancer development better
    • …
    corecore