4 research outputs found

    Partial Differential Equation-Constrained Diffeomorphic Registration from Sum of Squared Differences to Normalized Cross-Correlation, Normalized Gradient Fields, and Mutual Information: A Unifying Framework; 35632143

    Get PDF
    This work proposes a unifying framework for extending PDE-constrained Large Deformation Diffeomorphic Metric Mapping (PDE-LDDMM) with the sum of squared differences (SSD) to PDE-LDDMM with different image similarity metrics. We focused on the two best-performing variants of PDE-LDDMM with the spatial and band-limited parameterizations of diffeomorphisms. We derived the equations for gradient-descent and Gauss-Newton-Krylov (GNK) optimization with Normalized Cross-Correlation (NCC), its local version (lNCC), Normalized Gradient Fields (NGFs), and Mutual Information (MI). PDE-LDDMM with GNK was successfully implemented for NCC and lNCC, substantially improving the registration results of SSD. For these metrics, GNK optimization outperformed gradient-descent. However, for NGFs, GNK optimization was not able to overpass the performance of gradient-descent. For MI, GNK optimization involved the product of huge dense matrices, requesting an unaffordable memory load. The extensive evaluation reported the band-limited version of PDE-LDDMM based on the deformation state equation with NCC and lNCC image similarities among the best performing PDE-LDDMM methods. In comparison with benchmark deep learning-based methods, our proposal reached or surpassed the accuracy of the best-performing models. In NIREP16, several configurations of PDE-LDDMM outperformed ANTS-lNCC, the best benchmark method. Although NGFs and MI usually underperformed the other metrics in our evaluation, these metrics showed potentially competitive results in a multimodal deformable experiment. We believe that our proposed image similarity extension over PDE-LDDMM will promote the use of physically meaningful diffeomorphisms in a wide variety of clinical applications depending on deformable image registration

    LDDMM y GANs: Redes Generativas Antagónicas para Registro Difeomorfico.

    Get PDF
    El Registro Difeomorfico de imágenes es un problema clave para muchas aplicaciones de la Anatomía Computacional. Tradicionalmente, el registro deformable de imagen ha sido formulado como un problema variacional, resoluble mediante costosos métodos de optimización numérica. En la última década, contribuciones en la forma de nuevos métodos basados en formulaciones tradicionales están decreciendo, mientras que más modelos basados en Aprendizaje profundo están siendo desarrollados para aprender registros deformables de imágenes. En este trabajo contribuimos a esta nueva corriente proponiendo un novedoso método LDDMM para registro difeomorfico de imágenes 3D, basado en redes generativas antagónicas. Combinamos las arquitecturas de generadores y discriminadores con mejores prestaciones en registro deformable con el paradigma LDDMM. Hemos implementado con éxito tres modelos para distintas parametrizaciones de difeomorfismos, los cuales demuestran resultados competitivos en comparación con métodos del estado del arte tanto tradicionales como basados en aprendizaje profundo.<br /

    Long-time principal geodesic analysis in director-based dynamics of hybrid mechanical systems

    Get PDF
    In this article, we investigate an extended version of principal geodesic analysis for the unit sphere S2 and the special orthogonal group SO(3). In contrast to prior work, we address the construction of long-time smooth lifts of possibly non-localized data across branches of the respective logarithm maps. To this end, we pay special attention to certain critical numerical aspects such as singularities and their consequences on the numerical accuracy. Moreover, we apply principal geodesic analysis to investigate the behavior of several mechanical systems that are very rich in dynamics. The examples chosen are computationally modeled by employing a director-based formulation for rigid and flexible mechanical systems. Such a formulation allows to investigate our algorithms in a direct manner while avoiding the introduction of additional sources of error that are unrelated to principal geodesic analysis. Finally, we test our numerical machinery with the examples and, at the same time, we gain deeper insight into their dynamical behavior
    corecore