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Abstract: This work proposes a unifying framework for extending PDE-constrained Large Defor-
mation Diffeomorphic Metric Mapping (PDE-LDDMM) with the sum of squared differences (SSD)
to PDE-LDDMM with different image similarity metrics. We focused on the two best-performing
variants of PDE-LDDMM with the spatial and band-limited parameterizations of diffeomorphisms.
We derived the equations for gradient-descent and Gauss–Newton–Krylov (GNK) optimization with
Normalized Cross-Correlation (NCC), its local version (lNCC), Normalized Gradient Fields (NGFs),
and Mutual Information (MI). PDE-LDDMM with GNK was successfully implemented for NCC and
lNCC, substantially improving the registration results of SSD. For these metrics, GNK optimization
outperformed gradient-descent. However, for NGFs, GNK optimization was not able to overpass the
performance of gradient-descent. For MI, GNK optimization involved the product of huge dense
matrices, requesting an unaffordable memory load. The extensive evaluation reported the band-
limited version of PDE-LDDMM based on the deformation state equation with NCC and lNCC image
similarities among the best performing PDE-LDDMM methods. In comparison with benchmark deep
learning-based methods, our proposal reached or surpassed the accuracy of the best-performing
models. In NIREP16, several configurations of PDE-LDDMM outperformed ANTS-lNCC, the best
benchmark method. Although NGFs and MI usually underperformed the other metrics in our evalu-
ation, these metrics showed potentially competitive results in a multimodal deformable experiment.
We believe that our proposed image similarity extension over PDE-LDDMM will promote the use
of physically meaningful diffeomorphisms in a wide variety of clinical applications depending on
deformable image registration.

Keywords: PDE-LDDMM; Gauss–Newton–Krylov; optimal control optimization; band-limited
vector fields; normalized cross-correlation; normalized gradient fields; mutual information

1. Introduction

In the past two decades, diffeomorphic registration has become a fundamental problem
in medical image analysis [1]. The diffeomorphic transformations estimated from the
solution of the image registration problem constitute the inception point in Computational
Anatomy studies for modeling and understanding population trends and longitudinal
variations, and for establishing relationships between imaging phenotypes and genotypes
in Imaging Genetics [2–8]. Moreover, diffeomorphic registration can be as useful as any
other deformable image registration framework in the fusion of multi-modal information
from different sensors, the capture of correlations between structure and function, the
guidance of computerized interventions, and many other applications [9–11].

A relevant issue in deformable image registration is the quest for the most sensible
transformation model for each clinical domain. On the one hand, there are domains where
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the underlying biophysical model of the transformation is known. The incompressible
motion of the healthy heart is a relevant example [12]. On the other hand, there are also
important clinical contexts where the deformation model is not known, although there
is active research on finding the most plausible transformation among those explained
by a physical model [13–15]. The most relevant examples are the deformation between
healthy and diseased brains or the longitudinal evolution of the brain changes in healthy
and diseased individuals.

Although the differentiability and invertibility of the diffeomorphisms constitute
fundamental features for Computational Anatomy, the diffeomorphic constraint does not
necessarily guarantee that a transformation computed with a given method is physically
meaningful for the clinical domain of interest. In order to obtain physically meaningful
diffeomorphisms, the diffeomorphic registration methods should be able to impose a
plausible physical model to the computed transformations.

PDE-constrained LDDMM (PDE-LDDMM) registration methods have arisen as an ap-
pealing paradigm for computing diffeomorphisms under plausible physical models [13–22].
In the cases where the model is known, the PDE-LDDMM formulation allows the intro-
duction of the priors of the particular model [23–26]. The PDE-constrained formulation
is also helpful in the quest of plausible transformations for a clinical application with an
unknown deformation model [15]. In addition, PDE-LDDMM is a well-suited approach for
the estimation of registration uncertainty [27,28].

The different PDE-LDDMM methods differ on the variational problem formulation,
diffeomorphism parameterization, regularizers, image similarity metrics, optimization
methods, and additional PDE constraints. From them, the use of Gauss–Newton–Krylov
optimization [13,14,22], the addition of nearly incompressible terms in the variational
formulation [14,19], the use of variants involving the deformation state equation [18,22],
and the introduction of the band-limited parameterization and HPC or GPU implementa-
tions [19,20,22,29], constitute the most successful contributions to the realistic and efficient
computation of physically meaningful diffeomorphisms so far. Some attention has been
given to the image similarity metric, where the sum of squared differences (SSD) between
the final state variable and the target image has been mostly used [13,16,22]. Only two vari-
ations of PDE-LDDMM with normalized gradient fields (NGFs) and mutual information
(MI) have been proposed in [18,30] (ArXiv paper). These two methods use gradient-based
techniques for optimization.

SSD is based on image subtraction, so it is only well suited in uni-modal registration for
images where the intensity of the reciprocal structures do not vary much. Indeed, SSD is not
robust to noise, intensity inhomogeneity, and partial volume effects. Moreover, SSD is not
suitable for multi-modal registration, even for transformation models with a few degrees
of freedom such as those in rigid or affine image registration [31,32]. Therefore, there is a
need for PDE-LDDMM methods, preferably with Gauss–Newton–Krylov optimization,
which, apart from SSD, can support alternative image similarity metrics better behaved
than SSD. The solution to this problem will promote the use of PDE-LDDMM in a wide
variety of clinical applications depending on deformable image registration where images
are acquired from different sensors.

This work proposes a unifying framework for introducing different image similarity
metrics in the two best-performing variants of PDE-LDDMM [22,33]. From the Lagrangian
variational problems, we have identified that a change in the image similarity metric
involves changing the initial adjoint and the initial incremental adjoint variables. We have
derived the equations of these variables needed for gradient-descent and Gauss–Newton–
Krylov optimization with Normalized Cross Correlation (NCC), its local version (lNCC),
Normalized Gradient Fields (NGFs), and Mutual Information (MI).

NCC, lNCC, and MI have accompanied SSD in different deformable image registration
methods since their inception [34]. NGFs is an interesting metric for a wide variety of
deformable registration problems [35]. These metrics are available in relevant deformable
image registration packages such as the Insight Toolk it (www.itk.org, accessed on 1
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January 2022), NiftyReg (https://sourceforge.net/projects/niftyreg, accessed on 1 January
2022), or Fair [32], among others. In the framework of diffeomorphic image registration,
ANTS registration was implemented for SSD, lNCC, and MI (www.nitrc.org/projects/
ants, accessed on 1 January 2022) and the performance of the different image similarity
metrics was evaluated in [36]. We have selected these metrics as a starting point, although
our framework is extensible to other image similarity metrics proposed in the literature,
provided that the first and second-order variations of the image similarity metric can be
written in the expected form [37,38].

Our experiments focused on the spatial (SP) and band-limited (BL) stationary pa-
rameterization of diffeomorphisms, although the proposed methods can be straightfor-
wardly extended to the non-stationary parameterization [39]. We have obtained successful
Gauss–Newton–Krylov methods for SSD, NCC, and lNCC with evaluation results greatly
overpassing gradient-descent and competing with the respective version of ANTS diffeo-
morphic registration [40]. For NGFs, the second-order method did not provide satisfactory
results in comparison with gradient-descent. For MI, the memory load of the second-
order method hindered a proper evaluation in 3D datasets. We extensively studied the
performance of our methods in NIREP16 and Klein et al.’s evaluation frameworks [41,42],
obtaining an interesting insight into the impact of the different image similarity metrics in
the PDE-LDDMM framework.

Since the advances that made it possible to learn the optical flow using convolu-
tional neural networks (FlowNet [43]), dozens of deep-learning data-based methods were
proposed to approach the problem of deformable image registration in different clinical
applications [44]. Some of them are specifically devised for diffeomorphic registration
where the different LDDMM ingredients are used as a backbone for diffeomorphism pa-
rameterization and the definition of the loss functions [45–54]. These methods use SSD and
NCC metrics in the image similarity loss function, and the proposed models are usually
limited to a single modality where the appearance of the image pairs needs to be similar to
the training data. From them, only SynthMorph proposed a model valid for multi-modal
registration through the extensive generation of simulated data for training, which yields
a fast inference for diffeomorphism computation once the difficulties with training have
been overcome [53].

Although the authors of SynthMorph provided an extensive study on the generaliza-
tion capability of their models in different multi-modal experiments, the loss function is
restricted to the Dice Similarity Coefficient (DSC) on image segmentations and, therefore,
interesting questions such as the actual ability of deep-learning models to deal with mul-
timodality or influence of the image similarity loss function on the registration accuracy
have not been answered. In addition, results from the Learn2Reg challenge question the
superiority of deep learning approaches and open new research directions into hybrid
methods for which contributions to traditional optimization-based methods like ours may
be of interest [55].

In the following, Section 2 reviews the foundations of PDE-LDDMM and BL PDE-
LDDMM, from the original variant proposed in [13,16] to the variants used in this work.
Section 4.5 analyzes the change of image similarity metrics in PDE-LDDMM and derives
the equations needed for gradient-descent and Gauss–Newton–Krylov optimization for
the considered metrics. Section 4 gathers the experimental setup for the evaluation of
the methods, the numerical and implementation details of the proposed methods and the
benchmarks. Section 5 shows the evaluation results. Finally, Section 7 gathers the most
remarkable conclusions of our work.

2. PDE-Constrained LDDMM
2.1. LDDMM

LDDMM was proposed by Beg et al. in [56]. In this section, we recall the most relevant
aspects of this interesting method, which underpin PDE-LDDMM. Let Ω ∈ Rd, d = 2, 3 be
the image domain. The LDDMM registration problem is formulated between the source

https://sourceforge.net/projects/niftyreg
www.nitrc.org/projects/ants
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and the target images, I0 : Ω → R and I1 : Ω → R. These images are square-integrable
functions on Ω. Di f f (Ω) represents the Riemannian manifold of smooth diffeomorphisms
on Ω. The tangent space at the identity diffeomorphism is denoted with V. The Riemannian
metric of Di f f (Ω) is defined from a scalar product in V

〈v, w〉V = 〈Lv, w〉L2 =
∫

Ω
〈Lv(x), w(x)〉dΩ, (1)

through the invertible self-adjoint operator L = (Id− α∆)s, α > 0, s ∈ N with inverse K.
LDDMM aims at finding a smooth map ϕ : Ω → Rd with smooth inverse such that

the warped initial image I0 ◦ ϕ is non-rigidly aligned with I1. The diffeomorphism ϕ is
parameterized in the tangent space V from a time-varying vector field flow v : Ω× [0, 1]→
Rd and a path in Di f f (Ω) φ : Ω× [0, 1]→ Rd such that v and φ satisfy the PDE

∂tφ(t) + Dφ(t) · vt = 0 (2)

with initial condition φ(0) = id. It holds that ϕ = φ(1).
The solution to the registration problem is obtained from the minimization of a varia-

tional problem

E(v) =
1
2

Ereg(v) +
1
σ2 Eimg(I0, I1, ϕ), (3)

where Ereg(v) is the regularization term, Eimg(I0, I1, ϕ) is the image similarity metric that
quantifies the differences between I0 ◦ ϕ and I1 after registration, and σ weights the contri-
bution of both terms to the total energy.

2.2. Original PDE-Constrained LDDMM

PDE-constrained LDDMM (PDE-LDDMM) was originally formulated as a constrained
variational problem from the minimization of

E(v) =
1
2

∫ 1

0
〈vt, vt〉Vdt +

1
σ2 ‖m(1)− I1‖2

L2 , (4)

subject to
∂tm(t) +∇m(t) · vt = 0, (5)

with initial condition m(0) = I0 [14,16]. The solution of Equation (5), m(1), is the warped
initial image. The image similarity metric is the sum of squared differences (SSD) between
the intensities of m(1) and I1.

Although in the great majority of LDDMM methods the optimization is approached
with gradient-descent [16–18,40,56–58], Gauss–Newton–Krylov optimization has emerged
as the method of choice for PDE-LDDMM due to the excellent numerical accuracy and the
extraordinarily fast convergence rate [13,14,19]. The first and second-order differentials
of the PDE-constrained variational problem are computed using the method of Lagrange
multipliers, as follows.

Let us define the Lagrange multipliers λ : Ω× [0, 1]→ R and η : Ω→ R associated
with Equation (5) and its initial condition. The Lagrangian functional corresponds to
the expression

ELag(v) = E(v) +
∫ 1

0
〈λ(t), ∂tm(t) + Dm(t) · vt〉L2 dt + 〈η, m(0)− I0〉L2 . (6)

The first-order variation of the Lagrangian yields the expression of the gradient

∇vELag(v) = Lv + λ · ∇m, (7)

where
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∂tm(t) +∇m(t) · vt = 0 (8)

−∂tλ(t)−∇ · (λ(t) · vt) = 0, (9)

subject to the initial and final conditions m(0) = I0 and λ(1) = − 2
σ2 (m(1)− I1). Equation (4)

subject to Equation (5) is referred to as an optimal control problem, where v is the control
variable, Equation (8) is the state equation and Equation (9) is the adjoint equation.

The second-order variation of the Lagrangian functional yields the expression of the
Hessian-vector product, written in Gauss–Newton positive-definite approximated form,

HvELag(v)δv = Lδv + δλ · ∇m, (10)

where
− ∂tδλ(t)−∇ · (δλ(t) · vt) = 0, (11)

with final condition δλ(1) = − 2
σ2 δm(1). The variation of m, δm, satisfies the PDE with

initial condition δm(0) = 0

∂tδm(t) +∇δm · vt +∇m · δv = 0. (12)

Optimization using gradient-descent in V is driven by the update equation

vn+1 = vn − εK∇vELag(v), (13)

while Gauss–Newton–Krylov optimization yields the update equation

vn+1 = vn + εδvn, (14)

where δvn is computed from preconditioned conjugate gradient (PCG) on the system

HvELag(vn)δvn = −∇vELag(vn), (15)

where HvELag(vn) is the positive-definite Hessian approximation. The preconditioner used
in this work is K [13].

2.3. Variants of PDE-LDDMM

The original PDE-LDDMM has been recently completed with two alternative vari-
ants [22]. They can be considered theoretically but not numerically equivalent formulations
of the original one. These variants have been shown to improve the original formula-
tion in terms of registration accuracy and efficiency, in combination with the use of the
band-limited parameterization and GPU implementation [20,22,33].

2.3.1. Variant I

The first variant departs from the original variational formulation (Equation (4)) by
replacing the solution of the state equation (Equations (5) and (8)) with the identity

m(t) = I0 ◦ φ(t), (16)

where φ(t) is computed from the solution of the deformation state equation

∂tφ(t) + Dφ(t) · vt = 0 (17)

with initial condition φ(0) = id. Analogously, the solution of the adjoint equation
(Equation (9)) is replaced with the identity

λ(t) = |Dφ−1(t)|λ(1) ◦ φ−1(t), (18)
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and the solution of the incremental adjoint equation (Equation (11)) is replaced with
the identity

δλ(t) = |Dφ−1(t)|δλ(1) ◦ φ−1(t) · δφ−1(t). (19)

The inverse diffeomorphism ψ(t) = φ−1(t) and the corresponding Jacobian deter-
minant J(t) = |Dφ−1(t)| are computed, respectively, from the inverse deformation state
equation and the inverse Jacobian equation

−∂tψ(t)− Dψ(t) · vt = 0 (20)

−∂t J(t)− vt · ∇J(t) = −J(t)∇ · vt (21)

with final conditions ψ(1) = id and J(1) = 1. These identities were proposed in [16,22,56]
and effectively used in [22].

2.3.2. Variant II

The second variant consists in replacing the state equation (Equation (5)) by the deforma-
tion state equation (Equation (17)) in the original variational formulation (Equation (4)) [18,22].
In this case, the Lagrangian corresponds to

ELag(v) = E(v) +
∫ 1

0
〈ρ(t), ∂tφ(t)+

Dφ(t) · vt〉L2 dt + 〈µ, φ(0)− id〉L2 , (22)

where the Lagrange multipliers are ρ : Ω× [0, 1]→ Rd, associated with the deformation
state equation, and µ : Ω→ Rd, associated with its initial condition.

For Variant II, the first-order variation of the Lagrangian yields the expression of
the gradient

∇vELag(v) = Lv + Dφ · ρ, (23)

where

∂tφ(t) + Dφ(t) · vt = 0 (24)

−∂tρ(t)−∇ · (ρ(t) · vt) = 0 (25)

subject to the initial and final conditions φ(0) = id, and ρ(1) = λ(1) · ∇m(1).
The second-order variation of the Lagrangian functional yields the expression of the

Hessian-vector product (in Gauss–Newton approximated form)

HvELag(v)δv = Lδv + Dδφ · ρ, (26)

where

∂tδφ(t) + Dδφ(t) · vt + Dφ(t) · δv(t) = 0 (27)

−∂tδρ(t)−∇ · (δρ(t) · vt) = 0 (28)

subject to δφ(1) = 0, δρ(1) = δλ(1) · ∇m(1).

2.4. Band-Limited PDE-LDDMM

The band-limited (BL) parameterization of diffeomorphisms was proposed by
Zhang et al. [58–60]. In this section, we recall the most relevant aspects of this param-
eterization and then describe BL PDE-LDDMM. Let Ω̃ be the discrete Fourier domain
truncated with frequency bounds K1, . . . , Kd. We denote with Ṽ the space of discretized
band-limited vector fields on Ω with these frequency bounds. The elements in Ṽ are
represented in the Fourier domain as ṽ : Ω̃→ Cd, ṽ(k1, . . . , kd), and in the spatial domain
as ι(ṽ) : Ω→ Rd, ι(ṽ)(x1, . . . , xd). The application ι : Ṽ → V denotes the natural inclusion
mapping of Ṽ in V. The application π : V → Ṽ denotes the projection of V onto Ṽ.
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We denote with Di f f (Ω̃) the finite-dimensional Riemannian manifold of diffeomor-
phisms on Ω̃ with corresponding Lie algebra Ṽ. The Riemannian metric in Di f f (Ω̃) is
defined from the scalar product

〈ṽ, w̃〉Ṽ = 〈L̃ṽ, w̃〉l2 , (29)

where L̃ is the projection of operator L in the truncated Fourier domain. Similarly, we will
denote with Υ̃ the projection of any linear operator Υ in the truncated Fourier domain. In
addition, we will denote with ? the truncated convolution.

The BL PDE-LDDMM SSD variational problem is given by the minimization of

E(ṽ) =
1
2

∫ 1

0
〈L̃ṽt, ṽt〉l2 dt +

1
σ2 ‖m(1)− I1‖2

L2 (30)

subject to the state equation

∂tm(t) +∇m(t) · ι(ṽt) = 0 (31)

with initial condition m(0) = I0.
The expression of the gradient is computed in the space of band-limited vectors

yielding
˜∇ṽELag(ṽ) = L̃ṽ + π(λ · ∇m). (32)

The expression of the Hessian-vector product is computed analogously, yielding

˜HṽELag(ṽ)δṽ = L̃δṽ + π(δλ · ∇m). (33)

Optimization using gradient-descent is driven by the update equation

ṽn+1 = ṽn − εK̃ ˜∇ṽELag(ṽ), (34)

while Gauss–Newton–Krylov optimization yields the update equation

ṽn+1 = ṽn + εδṽn, (35)

where δṽn is computed from preconditioned conjugate gradient (PCG) on the Hessian-
gradient system defined in the BL domain.

2.4.1. BL Variant I

The BL version of Variant I is obtained with the identity m(t) = I0 ◦ φ(t), where
φ(t) = id− ι(ũ(t)) and ũ(t) is the solution of the BL deformation state equation

∂tũ(t) + D̃ũ(t) ? ṽt = ṽt (36)

with initial condition ũ(0) = π(0V). Analogously, λ(t) and δλ(t) are obtained from
Equations (18) and (19), where the inverse diffeomorphism and its Jacobian are computed
from the inverse deformation state equation and the inverse Jacobian equation defined in
the space of BL vector fields. The details can be found in [22].

2.4.2. BL Variant II

The BL version of Variant II is given by the minimization of Equation (30) subject to
the BL deformation state equation (Equation (36)). The gradient and the Hessian of the
Lagrangian are given by

˜∇ṽELag(ṽ) = L̃ṽ + ρ̃− D̃ũ ? ρ̃ (37)

˜HṽELag(ṽ)δṽ = L̃δṽ + δρ̃− D̃δũ ? ρ̃. (38)
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The PDE equations involved in the computation of the gradient and Hessian are
the convenient definitions of the spatial PDE equations in the band-limited domain. The
specific details can be found in [22]. From them, the most relevant ones to recall are
ρ̃(1) = π(λ(1) · ∇m(1)) and δρ̃(1) = π(δλ(1) · ∇m(1)).

3. Extending PDE-LDDMM from SSD to NCC, lNCC, NGFs, and MI Image
Similarity Metrics
3.1. Changing the Image Similarity Metric in PDE-LDDMM

From the analysis of the equations involved in the computation of Variants I and II
with SSD, a change in the image similarity term for PDE-LDDMM supposes to recompute
the expressions of λ(1) and δλ(1) for the given metric. This is valid also for Variant II since
the adjoint variable ρ(1) depends on λ(1). The BL versions of Variants I and II do also
depend on λ(1) and δλ(1).

Following the ideas in [32], our image similarity terms of interest can be written in
the shape

Eimg(v) = Ψ(r(m(1))), (39)

where the dependence of the right-hand-side on v is obtained through the state equation.
The first-order differential of Eimg corresponds to

δEimg(v) = 〈
∂Ψ
∂r

∂r
∂m(1)

, dm(1)〉. (40)

Departing from the expression of Equation (A2) in [22], the first-order differential of
the Lagrangian functional for a generic image similarity term is given by

δELag =
∫ 1

0
< Lv, dv > dt + 〈∂Ψ

∂r
∂r

∂m(1)
, dm(1)〉+

+
∫ 1

0
〈dλ, ∂tm + Dm · v〉+ 〈λ, ∂tdm + Ddm · v + Dm · dv〉+

+ 〈dη, m(0)− I0〉+ 〈η, dm(0)〉. (41)

Then, integration by parts combined with the Green formula yield

δELag(v) = 〈
∂Ψ
∂r

∂r
∂m(1)

+ λ(1), dm(1)〉+ other terms. (42)

The full expression can be found in Equation (A3) in [22]. Since, in particular, δELag

needs to vanish for all dm we have

λ(1) = −∂Ψ
∂r

∂r
∂m(1)

. (43)

Accordingly,

δ2Eimg(v) = 〈〈〈
∂r

∂m(1)
, dm(1)〉, ∂2Ψ

∂r2
∂r

∂m(1)
〉+ 〈dm(1),

∂Ψ
∂r

∂2r
∂m(1)2 〉, dm(1)〉. (44)

and

δ2Eimg(v) = 〈〈〈
∂r

∂m(1)
, dm(1)〉, ∂2Ψ

∂r2
∂r

∂m(1)
〉

+ 〈dm(1),
∂Ψ
∂r

∂2r
∂m(1)2 〉+ δλ(1), dm(1)〉+ other terms. (45)
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Since δ2ELag also needs to vanish for all dm, we have

δλ(1) = −〈 ∂r
∂m(1)

dm(1),
∂2Ψ
∂r2

∂r
∂m(1)

〉 − 〈dm(1),
∂Ψ
∂r

∂r2

∂m(1)2 〉. (46)

For Gauss–Newton–Krylov optimization, δλ(1) is approximated by the positive defi-
nite expression

δλ(1) ≈ −〈 ∂r
∂m(1)

dm(1),
∂2Ψ
∂r2

∂r
∂m(1)

〉, (47)

that neglects the higher-order derivatives of the inner function r [32].
In practise, we compute δEimg(v) and δ2Eimg(v) in the form of Equations (40) and (44)

and identify λ(1) and δλ(1) within the scalar products

δEimg(v) = 〈∇Eimg(v), dm(1)〉 (48)

δ2Eimg(v) = 〈〈dm(1), HEimg(v)〉, dm(1)〉. (49)

Alternatively, for some metrics, the expression of δλ(1) can be computed more straight-
forwardly from the differential of λ(1). The obtained expressions are corroborated by the
equations of λ(1) and δλ(1) for the SSD PDE-LDDMM problem with ψ = 〈·, ·〉L2 and
r = m(1)− I1. In the following, we derive the expressions of λ(1) and δλ(1) for the image
similarity metrics considered in this work.

3.2. Normalized Cross-Correlation (NCC)

In PDE-LDMMM, the NCC image similarity metric is defined as

Eimg(v) =
1
σ2

∫
Ω

1−
( 〈m̄(1), Ī1〉2
‖m̄(1)‖2 · ‖ Ī1‖2

)
(x)dΩ, (50)

where Ī = I −mean(I) for a generic image I. Let us define A(x) = 〈m̄(1)(x), Ī1(x)〉,
B(x) = ‖m̄(1)(x)‖2, and C(x) = ‖ Ī1(x)‖2. This allows us to define the NCC image
similarity metric in the form of

Eimg(v) =
1
σ2

∫
Ω

1− r(x)dΩ, (51)

where r = A2

B·C .
Using the expression of the differential dr, dA = 〈 Ī1, dm̄(1)〉, and dB = 2〈m̄(1), dm̄(1)〉,

the expression of δEimg(v) in terms of A, B and C is given by

δEimg(v) = −
1
σ2

2A
BC
〈 Ī1 −

A
B

m̄(1), dm̄(1)〉, (52)

yielding

λ(1) =
1
σ2

2
C

(
A
B

Ī1 −
(

A
B

)2
m̄(1)

)
. (53)

By the differentiation of λ(1), the expression of δλ(1) is given by

δλ(1) =
1
σ2

2
C

(
Θ Ī1 − 2

A
B

Θm̄(1)−
(

A
B

)2
)

dm̄(1), (54)

where Θ represents the differential of A
B , Θ =

Ī1−2 A
B m̄(1)
B .
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3.3. Local Normalized Cross-Correlation (lNCC)

The lNCC image similarity metric departs from the NCC metric by computing the
scalar products and the average of images in a neighborhood of size ν

Eimg(v) =
1
σ2

∫
1−

( 〈m̄(1), Ī1〉2ν
‖m̄(1)‖2

ν · ‖ Ī1‖2
ν

)
(x)dΩ. (55)

The expressions of λ(1) and δλ(1) are the restrictions of Equations (53) and (54) to the
ν-neighborhood.

3.4. Normalized Gradient Fields (NGFs)

The NGFs image similarity metric is defined as

Eimg(v) =
1
σ2

∫
Ω

1−
( 〈∇m(1),∇I1〉νµ

‖∇m(1)‖ν‖∇I1‖µ

)2

(x)dΩ, (56)

where 〈·, ·〉ε = 〈·, ·〉 + ε2 and ‖ · ‖ε =
√
〈·, ·〉+ ε2. The image similarity metric can be

written in the form of
Eimg(v) =

1
σ2

∫
Ω

1− r(x)2dΩ, (57)

where r is the quotient of the ε-scalar product and the ε-norms. Let us define
A(x) = 〈∇m(1)(x),∇I1(x)〉νµ, B(x) = ‖∇m(1)(x)‖ν, and C(x) = ‖∇I1(x)‖µ. We use
the same variable naming convention as in the NCC case for highlighting the analogies
between both metrics. In this case, the residual is given by r = A

B·C .
The expression of δEimg(v) is given in terms of r by

δEimg(v) = −〈2rdr, dm(1)〉.

Using the expression of the differential dr,

dA = 〈∇I1,∇dm(1)〉,

and
dB = (1/B)〈∇m(1),∇dm(1)〉,

the expression of δEimg(v) in terms of A, B and C is given by

δEimg(v) = −
1
σ2

2A
(BC)2 〈∇I1 −

A
B2∇m(1),∇dm(1)〉, (58)

which can be written in the form of Equation (40) using the identity 〈u,∇v〉 = 〈−∇ · u, v〉.
Thus,

λ(1) = − 2
σ2∇ ·

(
A

(BC)2∇I1 −
(

A
B2C

)2
∇m(1)

)
. (59)

Since ∂2Ψ
∂r2 = 2 for the NGF metric

δλ(1) = 〈〈 ∂r
∂m(1)

, dm(1)〉, 2
∂r

∂m(1)
〉. (60)

The details of the numerical implementation are given in Appendix B.
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3.5. Mutual Information (MI)

In PDE-LDDMM, the MI image similarity metric is defined as

Eimg(v) = −
1
σ2M(m(1), I1) = −

1
σ2 (H(m(1)) +H(I1)−H(m(1), I1)) (61)

whereH is the entropy function. The entropy for a generic image I, and a generic pair of
images (I, J), is defined, respectively, as

H(I) = −
∫

pI(r) log pI(r)dr (62)

and
H(I, J) = −

∫∫
pI,J(r, s) log pI,J(r, s)drds, (63)

where p represents the estimated marginal and joint intensity distributions of the images,
pI(r) = P(I = r) and pI,J(r, s) = P(I = r ∩ J = s). In the following, we discretize the
image variables and use the discrete expressions of the integrals.

The expression of δEimg(v) is given by [61]

δEimg(v) = −
1
σ2 ∑

r,s
δpm(1),I1

(r, s)

(
1 + log

pm(1),I1
(r, s)

pm(1)(r)

)
. (64)

In order to compute the differential δpm(1),I1
(r, s), we use the expression of p in

analytical form

pm(1),I1
(r, s) =

1
Nx

∑
x

ξ(r− m̄(1)(x))ξ(s− Ī1(x)), (65)

yielding

δpm(1),I1
(r, s) =

1
Nx

∑
x

δξ(r− m̄(1)(x))ξ(s− Ī1(x)). (66)

We use b-spline functions for the expression of ξ as proposed in [32]. The differential
of ξ, δξ, can be computed using the chain rule as

δξ(r− m̄(1)(x)) = −〈∂ξ

∂r
, dm̄(1)〉. (67)

Gathering the above expressions yields the expression of the initial adjoint variable

λ(1) = − 1
σ2 ∑

r,s

1
Nx

∑
x

∂ξ

∂r
ξ(s− Ī1(x)) (

1 + log
pm(1),I1

(r, s)
pm(1)(r)

)
. (68)

In the computation of δλ(1), a huge dense-matrix product requesting more than
5000 GBs of RAM memory arises. Therefore, we restrict this work to the gradient-descent
version of PDE-LDDMM for MI. The derivation of δλ(1) needed in Gauss–Newton–Krylov
optimization is left outside the scope of the present work.

4. Experimental Setup
4.1. Datasets

We used five different databases in our evaluation:
NIREP16, was proposed in [41] for the evaluation of non-rigid registration. NIREP16

consists of 16 T1 Magnetic Resonance Imaging (MRI) images. NIREP16 images were ac-
quired at the Human Neuroanatomy and Neuroimaging Laboratory, University of Iowa.
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They were selected for the NIREP project from a database of 240 normal volunteers. Datasets
correspond to 8 males and 8 females with a mean age of 32.5± 8.4 and 29.8± 5.8 years, re-
spectively. The images are skull stripped and aligned according to the anterior and posterior
commissures. Image dimension is 256× 300× 256 with a voxel size of 0.7× 0.7× 0.7 mm.
Images are distributed with the segmentation of 32 gray matter regions at frontal, parietal,
temporal, and occipital lobes. The most remarkable feature of this dataset is its excel-
lent image quality. The geometry of the segmentations provides a specially challenging
framework for deformable registration evaluation. In our previous works, a subsampled
version of this dataset has been extensively used for the evaluation of different LDDMM
methods. The mages of this dataset have been subsampled by reducing image dimension
to 180× 210× 180 with a voxel size of 1.0× 1.0× 1.0 mm. Subsampling is needed to be
able to run interesting but memory-demanding benchmark methods and to maintain the
continuity of the evaluation results shown in previous works.

Klein datasets were proposed in [42] in the first extensive evaluation study of non-
rigid registration methods. The datasets contain the T1 MRI images and segmentations
from the LPBA40, IBSR18, CUMC12, and MGH10 databases. The four databases provide
images with different levels of quality, providing varying difficulties for deformable regis-
tration [62]. Image dimension is 182× 218× 182 with a voxel size of 1.0× 1.0× 1.0 mm.

LPBA40 contains 40 skull-stripped brain images without the cerebellum and the brain
stem. LPBA40 provides the segmentation of 50 gray matter structures together with
left and right caudate, putamen, and hippocampus. LPBA40 protocols can be found at
https://loni.usc.edu/research/atlases (accessed on 1 January 2022).

IBSR18 contains 18 brain images with the segmentation of 96 cerebral structures. This
dataset provides the segmentation of brain structures of interest for the evaluation of image
registration methods. The image quality is low. For example, most of the images show
motion artifacts. The variability of the ventricle sizes is high.

CUMC12 contains 12 full brain images with the segmentation of 130 cerebral structures.
Overall, the image quality is acceptable, although some of the images are noisy. The
variability of the ventricle sizes is high.

MGH10 contains 10 full brain images with the segmentation of 106 cerebral structures.
Overall, the image quality is acceptable, although some of the images are noisy. Ventricle
sizes are usually all big.

In addition, we studied the performance of our methods in a multi-modal experiment,
where the images were obtained from:

Oasis. The open-access series of imaging studies (https://www.oasis-brains.org/,
accessed on 1 January 2022) is a project aimed at making neuroimaging data sets of the
brain freely available to the scientific community. OASIS-3 compiles images from more
than 1000 participants ranging from cognitively normal to various stages of cognitive
decline. For each participant, the study includes different MRI sessions including T1, T2,
FLAIR, and others. Our multimodal experiment selected a T2 image from an Alzheimer’s
disease participant as the source, and a T1 image from a cognitive normal participant as
the target image.

4.2. Image Registration Pipeline

The evaluation in NIREP16 was performed consistently with our previous works on
PDE-LDDMM diffeomorphic registration. The registrations were carried out from the
first subject to every other subject in the database, yielding a total of 15 registrations per
variant, optimization method, and image similarity metric. The subsampled NIREP16
database was obtained from the resampling of the original images into volumes of size
180× 210× 180 with a voxel size of 1.0× 1.0× 1.0 mm after the alignment to a common
coordinate system using affine transformations. The images were scaled between 0 and
1 for SSD and NCC metrics, and between 0 and 255 for lNCC, NGFs, and MI. The affine
alignment and subsampling were performed using the Insight Toolkit (ITK).

https://loni.usc.edu/research/atlases
https://www.oasis-brains.org/
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The LPBA40, IBSR18, CUMC12, and MGH10 images were preprocessed similarly
to [42]. The input images were selected from the Synapse repository (https://www.synapse.
org/#%21Synapse:syn3217707, accessed on 1 January 2022 ) in the folder hosting FLIRT
affine registered images. In the first place, histogram matching was applied to all the
images. The images were then scaled between 0 and 1 for SSD and NCC metrics, and
between 0 and 255 for lNCC, NGFs, and MI. To perform these preprocessing steps we used
the algorithms available in ITK.

Oasis images were finely aligned to the MNI152 atlas with NiftyReg and then skull
stripped using the robust brain extraction software RobEx (https://www.nitrc.org/projects/
robex, accessed on 1 January 2022).

4.3. Numerical Details, Parameter Configuration, and Implementation Details

The experiments were run on a cluster of two machines equipped with four NVidia
GeForce GTX 1080 ti with 11 GBS of video memory and an Intel Core i7 with 64 GBS of
DDR3 RAM, and two NVidia Titan RTX with 24 GBS of video memory and an Intel Core
i7 with 64 GBS of DDR3 RAM, respectively. The codes were developed in the GPU with
Matlab 2017a and Cuda 8.0.

Regularization parameters were selected from a search of the optimal parameters
in the registration experiments performed in our previous work [22]. We selected the
parameters σ2 = 1.0, α = 0.0025, and s = 2 and a unit-domain discretization of the image
domain Ω [56]. We also tested the parameters σ2 = 0.03, α = 3.0, and s = 3 and a spatial-
domain discretization of Ω, selected as optimal in [58]. For gradient-descent optimization,
we obtained excellent evaluation results; however, the obtained maximum Jacobians were
much higher than recommended. On the other hand, Gauss–Newton–Krylov showed
convergence problems during PCG, with negative curvature values found at early inner
iterations. This suggests that the specific selection of parameters in [58] might achieve fairly
high structural overlaps with the cost of very aggressive underlying deformations which
are glimpsed in the malfunctioning of Gauss–Newton.

The BL experiments were performed with band sizes of 32× 32× 32 for BL Variants I
and II. This selection was found as optimal for each method in our previous work [20,22,33].

Gradient-descent was implemented with an efficient method for the update of the step
size based on offline backtracking line-search combined with a check on Armijo’s condition.
We used the stopping conditions in [13,32]. Otherwise, the optimization was stopped after
50 iterations.

Gauss–Newton–Krylov was also implemented with an offline backtracking line-search
combined with a check on Armijo’s condition. The number of PCG iterations was set to
five. The PCG tolerance was selected from

τ = min

(
0.5,

√
‖∇vE(vn)‖2

‖∇vE(v0)‖2

)
.

We used the stopping conditions in [13,32]. Otherwise, the optimization was stopped
after 10 iterations. These parameters were selected as optimal in our previous work since
the methods achieved state-of-the-art accuracy in a reasonable amount of time [22].

PDE-LDDMM was embedded into a multi-resolution scheme. The images were
subsampled, and the velocity fields were resampled similarly to [63,64]. The PDE-LDDMM
registration methods were executed on each resolution level. For the multi-resolution
experiments, the pyramid was built with three levels with the same number of outer and
inner iterations, as for the single-resolution.

To integrate the PDEs, we used the semi-Lagrangian Runge–Kutta schemes proposed
in [33] for the SSD versions of Variants I and II. The solutions were computed at the
Chebyshev–Gauss–Lobatto discretization of the temporal domain [0, 1]. The number of
time steps was selected as five. Since Matlab lacks a 3D GPU cubic interpolator, we

https://www.synapse.org/#%21Synapse:syn3217707
https://www.synapse.org/#%21Synapse:syn3217707
https://www.nitrc.org/projects/robex
https://www.nitrc.org/projects/robex
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implemented in a Cuda MEX file the GPU cubic interpolator with prefiltering proposed
in [65].

The computation of differentials was approached using Fourier spectral methods as
a machine-precision accurate alternative to commonly used finite difference approxima-
tions [66]. Spectral methods allow solving of ODEs and PDEs for high accuracy in simple
domains for problems involving smooth data. To this end, the images were smoothed with
a Gaussian filter as a preprocessing step. However, for the Gauss–Newton–Krylov version
of NGFs, we used the matrix version of the differential operators, and then the computation
of differentials must be approached with finite difference approximations. To be consistent
with the input data, the images were also smoothed as a preprocessing step.

For lNCC, the size of the neighborhood was selected as four. For NGFs, the value of ε2

for the ε-norms was equal to 1000. For MI, the number of histogram bins was selected equal
to 16. The computation of the adjoint variable for MI required the use of sparse matrices
and was implemented in the CPU since Matlab does not yet have GPU support for these
data structures.

4.4. Benchmarks

For benchmarking, we run single- and multi-resolution versions of ANTS registration
with SSD, lNCC and MI image similarities [40]. We also extended Stationary LDDMM
(St-LDDMM), proposed in [67] as an efficient stationary variant of Beg et al.’s LDDMM [56],
with NCC, lNCC, NGFs, and MI metrics. The details of the method extension can be
found in Appendix A. In addition, we studied the accuracy obtained with QuickSilver,
a supervised deep-learning based method with SSD in the loss function [46], and Voxel-
Morph, an unsupervised deep learning-based model with SSD and NCC metrics in the loss
function [50].

St-LDDMM was run with the same parameters than PDE-LDDMM in the common
steps of the algorithms. ANTS was run with the following parameters for the single-
resolution experiments

$synconvergence = “[50,1× 10−6,10]”,
$synshrinkfactors = “1”,
and $synsmoothingsigmas = “3vox”.

For the multi-resolution experiments the parameters were set to

$synconvergence = “[50×50×50,1× 10−6,10]”,
$synshrinkfactors = “4×2×1”,
and $synsmoothingsigmas = “3×2×1vox”.

The selection of the number of iterations was in agreement with the number of it-
erations used in gradient-descent and the number of outer × inner iterations used in
Gauss–Newton–Krylov optimization for PDE-LDDMM.

In the multi-modal experiment, we compare our proposed methods with NiftyReg, a
software for efficient registration developed at the Centre for Medical Image Computing at
University College London, UK (https://sourceforge.net/projects/niftyreg/, accessed on 1
January 2022). NiftyReg is usually selected as a benchmark for non-rigid multimodal image
registration. We also include in the comparison ANTS and SynthMorph, a VoxelMorph
adaptation for building deep-learning models capable of dealing with multimodality [53].

4.5. Metrics and Statistical Analysis for Registration Evaluation

The evaluation in NIREP16 and Klein datases is based on the accuracy of the regis-
tration results for template-based segmentation. The Dice Similarity Coefficient (DSC) is
selected as the evaluation metric. Given two segmentations S and T, the DSC is defined as

DSC(S, T) =
2Vol(S ∩ T)

Vol(S) + Vol(T)
. (69)

https://sourceforge.net/projects/niftyreg/
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This metric provides the value of one if S and T exactly overlap and gradually de-
creases towards zero depending on the overlap of the two volumes. The statistical distribu-
tion of the DSC results across the segmented structures are shown in the shape of box and
whisker plots following the evaluation methods in [42]. The DSC distribution is taken over
the DSC values over the different segmentation labels. This way of computing the DSC
distribution reflects the recommendation given in [68] that the evaluation of non-rigid reg-
istration with the segmentation of sufficiently locally labeled regions of interest is strongly
recommended for obtaining reliable measurements of the performance of the registration.

The evaluation in NIREP16 was completed with two different statistical analysis on
the DSC values. In the first place, the analysis of variance (ANOVA) was conducted in order
to assess whether the means of the DSC distributions are different for the image similarity
metrics when observations are grouped by type of method (baseline vs. PDE-LDDMM)
or variants (I vs. II). Baseline methods include ANTS, Stationary LDDMM, VoxelMorph,
and QuickSilver. In the second place, pairwise right-tailed Wilcoxon rank-sum tests were
conducted for the assessment of the statistical significance of the difference of medians for
the distribution of the DSC values. The alternative hypothesis is that the median of the first
distribution is higher than the median of the second one.

Finally, we include for NIREP16 the quantitative assessment provided by the mean
and standard deviation of the relative image similarity error after registration,

MSErel =
‖m(1)− I1‖2

L2

‖I0 − I1‖2
L2

,

the relative gradient magnitude,

‖g‖∞,rel =
‖∇vE(vn)‖∞

‖∇vE(v0)‖∞
,

and the extrema of the Jacobian determinant.

5. Results

In this section, we show the experiments conducted to evaluate the performance of the
two PDE-LDDMM variants for the different image similarity metrics. First, we provide an
extensive evaluation of our proposed methods in the NIREP16 database, where we have ex-
tensively evaluated previous LDDMM and PDE-LDDMM registration methods [20,22,33,67].
Next, we evaluate our proposed methods in Klein et al. databases. Finally, we compare the
behavior of the different metrics in a challenging multimodal experiment.

5.1. Results on NIREP16
5.1.1. Evaluation

Figure 1 shows, in the shape of box and whisker plots, the statistical distribution of the
DSC values that were obtained after the registration across the 32 segmented structures. In
addition, Figure 2 gathers the results obtained with Gauss–Newton–Krylov optimization
grouped by variant for a better assessment of the best-performing combination of variant
and metrics. Our first observation is that the DSC coefficients for the multi-resolution
experiments outperform the single-resolution experiments. The improvement is substantial
for lNCC, NGFs, and MI metrics.

Single-resolution. Regarding the single-resolution experiments, it is striking the low
performance of ANTS for all metrics. Both St-LDDMM and PDE-LDDMM perform more
reasonably than ANTS. In general, PDE-LDDMM methods tend to outperform St-LDDMM.

For PDE-LDDMM and SSD, the differences between Gauss–Newton and gradient-
descent are small. Gauss–Newton optimization significantly outperforms gradient-descent
for NCC and lNCC. On the contrary, for NGFs, gradient-descent optimization outperforms
Gauss–Newton in all cases. The spatial version of Variant II exhibits an especially lower
performance. For St-LDDMM, the trends observed in PDE-LDDMM are also observed for
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SSD and NCC metrics. However, gradient-descent performs similarly to Gauss–Newton
for lNCC and Gauss–Newton outperforms gradient descent for the NGFs metric.

The results obtained with the spatial versions of the PDE-LDDMM variants are similar
to the corresponding BL versions. Comparing the accuracy of both variants, Variant II
provides in general better performance than Variant I.

For all variants, the overall best performing metric is NCC. For almost all variants,
the gradient-descent version of NGFs performs similarly to the Gauss–Newton version of
lNCC. For the BL methods, the Gauss–Newton version of NGFs also performs similarly to
the gradient-descent version of SSD. Moreover, the gradient-descent version of MI performs
similarly to the gradient-descent version of SSD.

Multi-resolution. Regarding the multi-resolution experiments, the performance of
ANTS reached the level of accuracy of St-LDDMM and the PDE-LDDMM methods. ANTS
with the lNCC metric greatly outperformed the other ANTS variants using SSD and MI,
ranking among the best-performing methods. In general, PDE-LDDMM methods tend to
outperform St-LDDMM, with the exception of the NGFs metric.

As happened with the single-resolution experiments for PDE-LDDMM, the differences
between Gauss–Newton optimization and gradient-descent are small for the SSD metric.
Gauss–Newton also outperforms gradient-descent for NCC and lNCC. For NGFs, gradient-
descent optimization greatly outperforms Gauss–Newton in the case of Variant II. However,
for Variant I, the differences between both optimization methods are small, especially for
the BL version of the methods. The performance of the NGFs metric is further explored in
Appendix B for a better understanding of these observations. For St-LDDMM, the trends
observed with the single-resolution experiments are mostly observed.

For Variant I, the spatial version tends to outperform the BL version of the same
variant slightly. However, the performance of the BL version of Variant II is similar or
even improves the spatial version for almost all metrics. As happened with the single-
resolution experiments, Variant II provides better performance than Variant I. The best
performing metric for Variant I is lNCC, while for Variant II, the best-performing metric is
still NCC, closely followed by lNCC. The resemblance of performance between MI and SSD
metrics in the single-resolution experiments remains for the multi-resolution experiments.
However, the excellent performance of NGFs metric with gradient-descent optimization is
remarkable, ranking close to the best-performing metrics for Variant II.

Comparing ANTS with PDE-LDDMM methods, Variant I with SSD and gradient-
descent performs similarly to ANTS-SSD. In the case of MI, PDE-LDDMM methods outper-
form ANTS-MI. Some PDE-LDDMM methods achieve results competing with ANTS-lNCC
for the NCC and lNCC metrics.

Deep-learning methods. Because of the increasing relevance of deep-learning meth-
ods in the field, we added to our evaluation the performance of VoxelMorph [50] and
QuickSilver [46]. VoxelMorph with SSD and QuickSilver with the correction step performed
similarly to Variant II of PDE-LDDMM with the SSD metric. Diffeomorphic VoxelMorph
with SSD ranked among the best-performing methods, with a box-plot distribution sim-
ilar to Variant I with lNCC and BL Variant II with NCC and lNCC. Despite all LDDMM
methods agreeing in the much better performance of NCC and lNCC metrics over SSD,
Diffeomorphic VoxelMorph trained with a loss function based on SSD greatly outperformed
the method trained with NCC. Lastly, it is a remarkable fact that, although VoxelMorph
is informed during training of the performance through the DSC, our best-performing
PDE-LDDMMs were able to achieve competitive results without the use of this information.

Statistical analysis. Table 1 shows the results of the analysis of variance (ANOVA)
for the effects of method and image similarity metric selection on the distribution of the
DSC values obtained in the multi-resolution experiments with Gauss–Newton optimization
(with the exception of the methods combined with the MI metric). The methods on the first
factor were grouped by type of method (baseline vs. PDE-LDDMM) and variants. The tests
only showed no statistical significance for the differences between the spatial versions of
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Variant I and Variant II. The selection of the Eimg metric resulted in statistical significance
for all cases.
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Figure 1. NIREP16. Volume overlap obtained by the registration methods measured in terms of the
DSC between the warped and the corresponding manual target segmentations. Box and whisker
plots show the distribution of the DSC values averaged over the 32 NIREP manual segmentations.
The whiskers indicate the minimum and maximum of the DSC values. The upper plot shows the
evaluation results in the single-resolution experiments. The lower plot shows the results in the
multi-resolution experiments. The horizontal lines in the plot indicate the first, second, and third
quartiles of one of the best-performing baseline methods (multiresolution ANTS-lNCC), facilitating
the comparison.

Figure 1. NIREP16. Volume overlap obtained by the registration methods measured in terms of the
DSC between the warped and the corresponding manual target segmentations. Box and whisker
plots show the distribution of the DSC values averaged over the 32 NIREP manual segmentations.
The whiskers indicate the minimum and maximum of the DSC values. The upper plot shows the
evaluation results in the single-resolution experiments. The lower plot shows the results in the
multi-resolution experiments. The horizontal lines in the plot indicate the first, second, and third
quartiles of one of the best-performing baseline methods (multiresolution ANTS-lNCC), facilitating
the comparison.



Sensors 2022, 22, 3735 18 of 35

Version May 11, 2022 submitted to Sensors 18 of 32

 0.425

 0.45

 0.475

 0.5

 0.525

 0.55

 0.575

 0.6

 0.625

 0.65

N
o 

re
g

VM
-S

SD

VM
-C

C

VM
2-

SSD

VM
2-

C
C

Q
ui
ck

Silv
er

Q
ui
ck

Silv
er

-C

AN
TS-S

SD

AN
TS-lN

C
C

AN
TS-M

I

St. 
LD

D
M

M
 S

SD
 G

N

SP V
ar

ia
nt

 I 
SSD

 G
N

BL 
Var

ia
nt

 I 
SSD

 G
N

SP V
ar

ia
nt

 II
 S

SD
 G

N

BL 
Var

ia
nt

 II
 S

SD
 G

N

St. 
LD

D
M

M
 N

C
C
 G

N

SP V
ar

ia
nt

 I 
N
C
C
 G

N

BL 
Var

ia
nt

 I 
N
C
C
 G

N

SP V
ar

ia
nt

 II
 N

C
C
 G

N

BL 
Var

ia
nt

 II
 N

C
C
 G

N

St. 
LD

D
M

M
 lN

C
C
 G

N

SP V
ar

ia
nt

 I 
lN

C
C
 G

N

BL 
Var

ia
nt

 I 
lN

C
C
 G

N

SP V
ar

ia
nt

 II
 lN

C
C
 G

N

BL 
Var

ia
nt

 II
 lN

C
C
 G

N

St. 
LD

D
M

M
 N

G
Fs 

G
N

SP V
ar

ia
nt

 I 
N
G
Fs 

G
N

BL 
Var

ia
nt

 I 
N
G
Fs 

G
N

SP V
ar

ia
nt

 II
 N

G
Fs 

G
N

BL 
Var

ia
nt

 II
 N

G
Fs 

G
N

St. 
LD

D
M

M
 M

I G
D

SP V
ar

ia
nt

 I 
M

I G
D

BL 
Var

ia
nt

 I 
M

I G
D

SP V
ar

ia
nt

 II
 M

I G
D

BL 
Var

ia
nt

 II
 M

I G
D

A
v
e

ra
g

e
 D

S
C

 i
n

 3
2

 R
O

Is

DSC overlap in subsampled NIREP16 
 multi-resolution

Figure 2. NIREP16. Same legend than Figure 1. Results obtained with PDE-LDDMM and Gauss-
Newton-Krylov optimization. Boxplots grouped by variant. St-LDDMM is grouped with PDE-
LDDMM results for facilitating comparison.

Factor I Factor II p-value I p-value II
Baseline vs SP Variant I Eimg 1.07e-5 1.09e-11
Baseline vs BL Variant I Eimg 3.09e-7 1.45e-19
Baseline vs SP Variant II Eimg 1.07e-5 1.091e-11
Baseline vs BL Variant II Eimg 1.07e-5 1.091e-11
PDE-LDDMM methods Eimg 3.89e-7 1.77e-21

SP Variant I vs SP Variant II Eimg 0.339 0
BL Variant I vs BL Variant II Eimg 1.88e-08 3.46e-13
SP Variant I vs BL Variant I Eimg 0.0284 0

SP Variant II vs BL Variant II Eimg 0.0068 0
Table 1. NIREP16. Multi-resolution experiments and Gauss-Newton-Krylov optimization. Results of
ANOVA tests for the effects of method and image similarity metric selection.

Figure 2. NIREP16. Same legend to Figure 1. Results obtained with PDE-LDDMM and Gauss–
Newton–Krylov optimization. Boxplots grouped by variant. St-LDDMM is grouped with PDE-
LDDMM results for facilitating comparison.

Table 1. NIREP16. Multi-resolution experiments and Gauss–Newton–Krylov optimization. Results
of ANOVA tests for the effects of method and image similarity metric selection.

Factor I Factor II p-Value I p-Value II

Baseline vs. SP Variant I Eimg 1.07× 10−5 1.09× 10−11

Baseline vs. BL Variant I Eimg 3.09× 10−7 1.45× 10−19

Baseline vs. SP Variant II Eimg 1.07× 10−5 1.09× 10−11

Baseline vs. BL Variant II Eimg 1.07× 10−5 1.09× 10−11

PDE-LDDMM methods Eimg 3.89× 10−7 1.77× 10−21

SP Variant I vs. SP Variant II Eimg 0.339 0
BL Variant I vs. BL Variant II Eimg 1.88× 10−8 3.46× 10−13

SP Variant I vs. BL Variant I Eimg 0.0284 0
SP Variant II vs. BL Variant II Eimg 0.0068 0

Figure 3 shows the p-values of pairwise right-tailed Wilcoxon rank-sum tests for the
distribution of the DSC values obtained in the multi-resolution experiments with Gauss–
Newton optimization (with the exception of the methods combined with the MI metric).
The figure shows statistical significance for the better performance of the NCC and lNCC
metrics over SSD and MI. For NGFs, obtaining statistical significance depends on the
method. Among the best-performing methods, no statistical significance was found for the
difference of medians.

5.1.2. Quantitative Assessment

Table 2 shows, averaged by the number of experiments, the mean and standard
deviation of the MSErel , ‖g‖∞,rel , and the extrema of the Jacobian determinant obtained
with PDE-LDDMM in the NIREP16 dataset. We restrict the results to the methods with
Gauss–Newton–Krylov optimization with the exception of the methods with the MI metric.
For NGFs, the results with gradient descent and different Gauss–Newton approximations
are analyzed in depth in Appendix B. Table 3 shows the average MSErel values and the
extrema of the Jacobian determinant for VoxelMorph and QuickSilver.
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For the single-resolution experiments, the best MSErel values were obtained by the
NCC metric, followed by SSD. Although the MSErel values for the lNCC and MI metrics
ranged higher than 20%, their performance in the evaluation reported a similar distribution.
For lNCC, NGFs, and MI, the correlation between the lowest MSErel values and the highest
DSC results that are usually seen for SSD in previous works does not hold anymore [22,33].

The spatial methods slightly outperformed the BL methods in terms of the MSErel
values, as expected. Variant II performed better than Variant I. The relative gradient was
reduced to average values ranging from 0.01 to 0.18, except for the lNCC and NGFs metrics.
This means that the optimization was stopped in acceptable energy values in all these
cases. Although the relative gradient obtained with lNCC was higher than recommended,
the corresponding DSC distributions indicate that the lNCC methods can reach a local
minimum providing good registration results. All the Jacobians remained above zero.
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Figure 3. NIREP16. Multi-resolution experiments and Gauss–Newton–Krylov optimization. Results
of the pairwise right-tailed Wilcoxon rank-sum tests.

For the multi-resolution experiments, the results regarding the MSErel values and the
Jacobians were consistent with the single-resolution experiments. However, the high values
of the relative gradient indicate a stagnation of the convergence in the finer resolution
level that may be due to the method already starting close to the convergence point at the
beginning of this resolution level.

Both VoxelMorph and QuickSilver usually obtained MSErel values greater than PDE-
LDDMM with the corresponding image similarity metric. It is striking the magnitude of
the Jacobian extrema obtained by VoxelMorph and its diffeomorphic version, indicating
that the accuracy of the registration results shown in Figure 2 are obtained through large
folds in a considerable number of locations.

Figure 4 shows the evolution of the convergence curves for the image similarity metrics
Eimg in the single-resolution experiments. For all the metrics, the trend of the Eimg values is
decreasing. The most unexpected behavior is for the curves of the lNCC metrics, where the
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standard deviation remains stable and large in comparison with the energy reduction. The
curves of the NGFs metrics show the stagnation of the energy values for the BL variants.
This is the cause of the low DSC distributions already shown in Figure 1.

Spatial methods show slightly better Eimg values than BL methods. Comparing the
variants, Variant II provides slightly lower Eimg values than Variant I. These results are
consistent with the evaluation and the quantitative assessment shown in Figure 1 and Table 2.

Table 2. NIREP16. Convergence results. Mean and standard deviation of the relative image similarity
error expressed in % (MSErel), the relative gradient magnitude (‖g‖∞,rel), and the Jacobian determi-
nant extrema associated with the transformation (φv

1)
−1. The best MSErel results for each variant are

highlighted in bold face.

Metric MSErel(%) ‖g‖∞,rel min(J(φv
1 )
−1) max(J(φv

1 )
−1)

Single-resolution

SP Variant I, SSD, GN 18.29 ± 2.83 0.07 ± 0.05 0.16 ± 0.05 3.70 ± 0.51
SP Variant I, NCC, GN 16.51 ± 2.13 0.17 ± 0.01 0.01 ± 0.02 3.92 ± 0.68
SP Variant I, lNCC, GN 20.56 ± 2.31 0.49 ± 0.32 0.04 ± 0.03 3.79 ± 0.40
SP Variant I, NGFs, GN 39.14 ± 2.91 0.71 ± 0.15 0.14 ± 0.03 4.67 ± 0.35

SP Variant I, MI, GD 24.34 ± 2.58 0.13 ± 0.06 0.18 ± 0.06 2.17 ± 0.15

SP Variant II, SSD, GN 17.10 ± 1.50 0.12 ± 0.05 0.14 ± 0.05 5.02 ± 1.01
SP Variant II, NCC, GN 15.34 ± 1.95 0.15 ± 0.06 0.10 ± 0.05 6.31 ± 1.65
SP Variant II, lNCC, GN 24.34 ± 2.90 0.30 ± 0.08 0.20 ± 0.03 3.71 ± 0.64
SP Variant II, NGFs, GN 46.78 ± 2.50 0.67 ± 0.13 0.34 ± 0.03 3.65 ± 0.46

SP Variant II, MI, GD 22.26 ± 2.42 0.12 ± 0.02 0.26 ± 0.05 2.61 ± 0.32

BL Variant I, SSD, GN 19.89 ± 1.76 0.01 ± 0.00 0.29 ± 0.03 3.45 ± 0.29
BL Variant I, NCC, GN 17.06 ± 1.71 0.03 ± 0.01 0.09 ± 0.04 4.56 ± 0.59
BL Variant I, lNCC, GN 24.30 ± 2.68 0.14 ± 0.06 0.17 ± 0.03 3.69 ± 0.49
BL Variant I, NGFs, GN 71.93 ± 1.78 0.78 ± 0.08 0.62 ± 0.02 1.56 ± 0.05

BL Variant I, MI, GD 26.21 ± 2.66 0.02 ± 0.00 0.28 ± 0.04 2.19 ± 0.14

BL Variant II, SSD, GN 17.77 ± 1.66 0.04 ± 0.01 0.13 ± 0.04 4.81 ± 0.72
BL Variant II, NCC, GN 15.57 ± 1.71 0.05 ± 0.02 0.09 ± 0.04 6.29 ± 1.15
BL Variant II, lNCC, GN 22.74 ± 2.77 0.16 ± 0.04 0.17 ± 0.04 4.41 ± 0.76
BL Variant II, NGFs, GN 71.77 ± 1.75 0.91 ± 0.08 0.60 ± 0.02 1.56 ± 0.05

BL Variant II, MI, GD 23.30 ± 2.61 0.03 ± 0.01 0.28 ± 0.04 2.46 ± 0.18

Multi-resolution

SP Variant I, SSD, GN 17.98 ± 2.71 2.50 ± 3.49 0.02 ± 0.08 3.67 ± 0.82
SP Variant I, NCC, GN 14.89 ± 2.24 1.33 ± 0.89 0.04 ± 0.12 9.77 ± 20.45
SP Variant I, lNCC, GN 12.94 ± 3.11 0.72 ± 0.37 0.01 ± 0.02 5.17 ± 1.18
SP Variant I, NGFs, GN 29.08 ± 2.55 0.66 ± 0.26 0.05 ± 0.04 6.99 ± 1.74

SP Variant I, MI, GD 18.35 ± 2.19 0.99 ± 1.39 0.06 ± 0.06 3.26 ± 0.31

SP Variant II, SSD, GN 15.93 ± 1.51 1.13 ± 0.67 0.12 ± 0.03 9.89 ± 6.86
SP Variant II, NCC, GN 13.12 ± 1.69 1.02 ± 0.27 0.08 ± 0.03 14.32 ± 11.37
SP Variant II, lNCC, GN 15.23 ± 2.20 1.10 ± 0.39 0.10 ± 0.03 5.52 ± 0.81
SP Variant II, NGFs, GN 24.20 ± 2.41 0.84 ± 0.15 0.23 ± 0.03 4.76 ± 1.08

SP Variant II, MI, GD 19.15 ± 2.41 0.46 ± 0.08 0.17 ± 0.04 4.14 ± 1.30

BL Variant I, SSD, GN 19.22 ± 1.72 0.11 ± 0.05 0.14 ± 0.06 3.74 ± 0.38
BL Variant I, NCC, GN 15.81 ± 1.62 0.21 ± 0.07 0.09 ± 0.05 5.04 ± 0.76
BL Variant I, lNCC, GN 14.41 ± 2.45 0.82 ± 0.25 0.08 ± 0.04 6.32 ± 1.64
BL Variant I, NGFs, GN 24.10 ± 2.96 0.30 ± 0.15 0.09 ± 0.02 9.62 ± 1.90

BL Variant I, MI, GD 18.35 ± 2.19 0.31 ± 0.21 0.06 ± 0.06 3.26 ± 0.31

BL Variant II, SSD, GN 16.30 ± 1.60 0.25 ± 0.08 0.11 ± 0.04 6.30 ± 1.64
BL Variant II, NCC, GN 13.65 ± 1.72 0.47 ± 0.19 0.07 ± 0.03 9.46 ± 2.78
BL Variant II, lNCC, GN 13.67 ± 2.26 1.00 ± 0.48 0.08 ± 0.03 7.92 ± 1.23
BL Variant II, NGFs, GN 23.04 ± 2.25 0.51 ± 0.20 0.07 ± 0.02 7.72 ± 2.24

BL Variant II, MI, GD 19.35 ± 2.50 0.13 ± 0.15 0.17 ± 0.05 3.80 ± 0.63
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Table 3. NIREP16. Quantitative results of the deep-learning methods. Mean and standard deviation
of the relative image similarity error expressed in % (MSErel), and the Jacobian determinant extrema
associated with the transformation φ−1. The best MSErel results for each method are highlighted in
bold face.

Metric MSErel(%) min(J(φ−1)) max(J(φ−1))

VM-SSD 17.82 ± 0.98 −13.04 ± 5.72 86.12 ± 97.05
VM-CC 20.25 ± 0.93 −14.89 ± 3.87 59.69 ± 11.59

VM2-SSD 16.35 ± 0.67 −9.26 ± 5.26 53.13 ± 26.16
VM2-CC 14.34 ± 0.95 −7.65 ± 1.56 46.91 ± 7.83

QuickSilver 19.03 ± 1.37 0.31 ± 0.03 9.54 ± 2.44
QuickSilver-C 15.75 ± 1.27 0.32 ± 0.05 9.59 ± 2.66
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Figure 4. NIREP16. Single-resolution experiments. Box and whisker plots of the Eimg convergence
values in the single resolution experiments. For gradient-descent, the energy values are shown every
5 iterations.

Figure 4. NIREP16. Single-resolution experiments. Box and whisker plots of the Eimg convergence
values in the single resolution experiments. For gradient-descent, the energy values are shown every
five iterations.
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5.1.3. Qualitative Assessment

For a qualitative assessment of the proposed registration methods, we show the
registration results obtained by the different metrics for the BL version of Variant II in the
multi-resolution experiments. Figure 5 shows the warped images, the difference between
the warped and the target images after registration, the velocity fields, and the logarithm
of the Jacobian determinant. The resemblance of the differences between the warped and
the target images was high for all the metrics except for NGFs. Focusing on the registration
results at the ventricle, SDD and NCC were able to achieve the best compression of the
structure, while NGFs obtained the worst registration results at this location. Figure 6
shows the warped images, the difference between the warped and the target images, the
displacement fields, and the logarithm of the Jacobian determinant for VoxelMorph. The
resemblance of the differences between the warped and the target images was higher for
SSD than NCC. The displacement fields were visually less smooth than the velocity fields
obtained with PDE-LDDMM. The Jacobian determinant had negative regions all over the
image. In particular, the registration results at the ventricle were achieved through large
expansions and foldings in its upper boundary.
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Figure 5. NIREP16. BL Variant II of PDE-LDDMM. Multi-resolution experiments. Sagittal view of the
warped sources, the intensity differences after registration, the velocity fields, and the logarithm of the
Jacobian determinants after registration for the different image similarity metrics. The results for SSD,
NCC, lNCC, and NGFs are obtained with Gauss-Newton optimization while for MI gradient-descent
is used.

Figure 5. NIREP16. BL Variant II of PDE-LDDMM. Multi-resolution experiments. Sagittal view of the
warped sources, the intensity differences after registration, the velocity fields, and the logarithm of the
Jacobian determinants after registration for the different image similarity metrics. The results for SSD,
NCC, lNCC, and NGFs are obtained with Gauss–Newton optimization, while for MI gradient-descent
is used.
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Figure 6. NIREP16. VoxelMorph experiments. Sagittal view of the warped sources, the intensity
differences after registration, the displacement fields, and the logarithm of the Jacobian determinants
after registration for the different image similarity metrics. For the negative Jacobian values, the
logarithm has been replaced by -2 and displayed in black.

Method timeGPU (s) peak VRAM (MBs)
SP Variant I, SSD, GN 144.51± 5.87 5823
SP Variant I, NCC, GN 145.25± 6.93 5875
SP Variant I, lNCC, GN 169.02± 0.92 6159
SP Variant I, NGFs, GD 149.18± 1.04 5023

SP Variant I, MI, GD 347.35± 0.41 4997
BL Variant I, SSD, GN 77.44± 0.28 3263
BL Variant I, NCC, GN 79.92± 0.51 3279
BL Variant I, lNCC, GN 109.69± 1.45 3705
BL Variant I, NGFs, GD 132.41± 1.71 2945

BL Variant I, MI, GD 328.27± 0.47 2977
SP Variant II, SSD, GN 215.61± 1.66 5769
SP Variant II, NCC, GN 216.29± 3.25 5899
SP Variant II, lNCC, GN 238.49± 3.25 6065
SP Variant II, NGFs, GD 159.21± 1.58 4555

SP Variant II, MI, GD 354.55± 2.11 4555
BL Variant II, SSD, GN 100.07± 0.30 2271
BL Variant II, NCC, GN 100.21± 0.88 2557
BL Variant II, lNCC, GN 130.53± 1.01 2921
BL Variant II, NGFs, GD 138.28± 1.87 2389

BL Variant II, MI, GD 331.28± 1.87 2357

Table 4. NIREP16. Single-resolution experiments. Mean and standard deviation of the total GPU
time, and maximum VRAM memory usage achieved by the methods through the registrations.
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Figure 6. NIREP16. VoxelMorph experiments. Sagittal view of the warped sources, the intensity
differences after registration, the displacement fields, and the logarithm of the Jacobian determinants
after registration for the different image similarity metrics. For the negative Jacobian values, the
logarithm is replaced by −2 and displayed in black.

5.1.4. Computational Complexity

Table 4 shows the average and standard deviation of the total computation time and
the VRAM peak memory reached through the computations in the NIREP16 database
for the single-resolution experiments. The BL methods achieved a substantial time and
memory reduction over the spatial methods, as already demonstrated in [22,33,39]. From
the Gauss–Newton methods, the methods with SSD and NCC image similarity metrics
were the most efficient ones, as expected. On the other side, the methods with MI were the
most time-consuming ones. Regarding memory usage, the methods using SSD and NCC
were more efficient than lNCC. The memory efficiency shown by NGFs and MI metrics
was due to the combination with gradient-descent and the need to perform operations
involving sparse matrices on the CPU.

Table 4. NIREP16. Single-resolution experiments. Mean and standard deviation of the total GPU
time, and maximum VRAM memory usage achieved by the methods through the registrations.

Method timeGPU (s) Peak VRAM (MBs)

SP Variant I, SSD, GN 144.51 ± 5.87 5823
SP Variant I, NCC, GN 145.25 ± 6.93 5875
SP Variant I, lNCC, GN 169.02 ± 0.92 6159
SP Variant I, NGFs, GD 149.18 ± 1.04 5023

SP Variant I, MI, GD 347.35 ± 0.41 4997

BL Variant I, SSD, GN 77.44 ± 0.28 3263
BL Variant I, NCC, GN 79.92 ± 0.51 3279
BL Variant I, lNCC, GN 109.69 ± 1.45 3705
BL Variant I, NGFs, GD 132.41 ± 1.71 2945

BL Variant I, MI, GD 328.27 ± 0.47 2977
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Table 4. Cont.

Method timeGPU (s) Peak VRAM (MBs)

SP Variant II, SSD, GN 215.61 ± 1.66 5769
SP Variant II, NCC, GN 216.29 ± 3.25 5899
SP Variant II, lNCC, GN 238.49 ± 3.25 6065
SP Variant II, NGFs, GD 159.21 ± 1.58 4555

SP Variant II, MI, GD 354.55 ± 2.11 4555

BL Variant II, SSD, GN 100.07 ± 0.30 2271
BL Variant II, NCC, GN 100.21 ± 0.88 2557
BL Variant II, lNCC, GN 130.53 ± 1.01 2921
BL Variant II, NGFs, GD 138.28 ± 1.87 2389

BL Variant II, MI, GD 331.28 ± 1.87 2357

5.2. LPBA40, IBSR18, CUMC12, and MGH10 Evaluation Results

Figure 7 shows the statistical distribution of the DSC values obtained with PDE-
LDDMM for Klein databases [42]. As a benchmark, we include the results reported in [42]
for affine registration (FLIRT) and three diffeomorphic registration methods: Diffeomorphic
Demons, SyN, and Dartel. We also include the results of QuickSilver and VoxelMorph.

For LPBA40, Variant I with lNCC and Variant II with metrics from SSD to NGFs
reached a performance similar to SyN with many outliers significantly reduced. For each
metric, Variant II outperformed the corresponding Variant I. The worst performing results
were consistently achieved by NGFs and Gauss–Newton–Krylov optimization. QuickSilver
performed slightly better under SDD and NCC versions of Variant I. VoxelMorph was the
worst-performing method for all metrics.

For IBSR18, SP and BL Variant I with lNCC, SP Variant II with NCC and BL Variant
II with NCC and lNCC metrics were the best performing PDE-LDDMM methods. Their
performance was slightly over the one exhibited by QuickSilver and greatly over the one
obtained with VoxelMorph. However, in all cases, these methods underperformed SyN
and Dartel.

For CUMC12, the best performing PDE-LDDMM methods were SP and BL Variant
I with lNCC and Variant II with NCC and lNCC. As happened with IBSR18, these meth-
ods slightly outperformed QuickSilver while greatly outperformed VoxelMorph. It is
remarkable the low performance of BL variants with NGF and Gauss–Newton–Krylov
optimization. All the methods underperformed SyN and Dartel methods.

Finally, for MGH10, the best performance was achieved by variants I and II with lNCC
similarity metric. It is remarkable the low performance of Variant I with NGF with gradient
descent underperforming Gauss–Newton–Krylov optimizers. In this case, the methods
underperformed SyN, while the best-performing methods showed a DSC distribution
similar to Dartel. QuickSilver and VoxelMorph achieved performance similar to the SSD
version of Variant I.

These results corroborate the better performance of Variant II over Variant I obtained
in the evaluation with NIREP16 for the majority of metrics. The lNCC metric is positioned
as the best-performing one for the majority of methods and databases. The NGFs metric
has shown better performance for gradient descent optimization in the great majority of
experiments. The best PDE-LDDMM combination of variants and metrics overpassed
deep-learning based methods in all the datasets.

Regarding the consistent outperformance of SyN and Dartel over all the considered
methods, we found out that SyN used a probabilistic image similarity metric while Dartel
used tissue probability maps as inputs. The images in IBSR18, CUMC12, and MGH10 have
low contrast, and, therefore, the algorithmic choices performed by SyN and Dartel overpass
the use of challenging inputs. We have also seen that performing histogram equalization
for contrast enhancement as in QuickSilver original paper [46] improved the evaluation
results reaching SyN and Dartel performance. However, this preprocessing reduces the
influence of the used metrics in the obtained DSCs and provides less informative results.
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Figure 7. LPBA40, IBSR18, CUMC12, and MGH10. Distribution of the DSC values averaged over
the manual segmentations in the registration experiments. The whiskers indicate the minimum and
maximum of the DSC values. The horizontal lines indicate the first, second, and third quartiles of
SyN benchmark method, facilitating the comparison.

Figure 7. LPBA40, IBSR18, CUMC12, and MGH10. Distribution of the DSC values averaged over
the manual segmentations in the registration experiments. The whiskers indicate the minimum and
maximum of the DSC values. The horizontal lines indicate the first, second, and third quartiles of the
SyN benchmark method, facilitating the comparison.
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6. Multimodal Experiment

Figure 8 shows an axial view of the registration results obtained by NiftyReg, ANTS,
SynthMorph, and BL PDE-LDDMM Variant II in the Oasis multimodal experiment. The
worst-performing metrics are SSD (as expected) and NCC. All methods with lNCC, NGFs,
and MI metrics provide acceptable registration results with subtle differences between
the warps located at the ventricle front horns and the atrium and the distribution of gyri
and sulci in the cerebral cortex. The most visually accurate methods are NiftyReg, ANTS-
MI, SynthMorph, and PDE-LDDMM from lNCC and MI. It should be noticed that the
registration results of NiftyReg are obtained at the cost of folding the transformations.
SynthMorph provides excellent registration results but the used similarity metric is DSC
over the segmented images, overpassing the direct use of images from different modalities.

Version May 11, 2022 submitted to Sensors 27 of 32
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Figure 8. Oasis. BL PDE-LDDMM Variant II. Warped sources obtained for the methods considered in
the multimodal simulated experiment.
Figure 8. Oasis. BL PDE-LDDMM Variant II. Warped sources obtained for the methods considered in
the multimodal simulated experiment.
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7. Discussion and Conclusions

In this work, we have presented a unifying framework for introducing different
image similarity metrics in the two best-performing variants of PDE-LDDMM with Gauss–
Newton–Krylov optimization [22,33]. From the Lagrangian variational problem, we have
identified that the change in the image similarity metric involves changing the initial adjoint
and the initial incremental adjoint variables. We derived the equations of these variables for
NCC, its local version (lNCC), NGFs, and MI. PDE-LDDMM with Gauss–Newton–Krylov
optimization being successfully extended from SSD to NCC, and lNCC image similarity
metrics. For NGFs, the method was not able to overpass gradient-descent optimization.
With MI, the computation of the Hessian-matrix product required the product of dense
matrices that requested more than 5000 GBs of memory, thus becoming far from feasible.
Therefore, we obtained varying degrees of success in our initial objective.

The evaluation performed in NIREP16 database has shown the superiority of Variant
II with respect to Variant I, as happened in [22,33]. In addition, the results reported for the
BL version of Variant II were statistically indistinguishable from the SP (spatial) version.
For any image similarity metric, BL Variant II overpassed the baseline established by ANTS.
For BL Variant II, NCC and its local version were the best-performing metrics, closely
followed by the gradient-descent version of NGFs. The superiority of these metrics was
statistically significant. The outperformance of lNCC was quantified for the first time
for ANTS diffeomorphic registration with gradient-descent and LPBA40 in [36]. Our
best-performing variants overpassed QuickSilver, a supervised deep-learning method for
diffeomorphic registration. In addition, they provided competitive results when compared
with VoxelMorph with the added value of PDE-LDDMM being agnostic to the evaluation
metric and providing purely diffeomorphic solutions.

The MSErel values were in agreement with the DSC distributions obtained with NCC
and SSD. However, for lNCC, NGFs and MI, the correlation between the MSErel values
and the DSC seen usually for SSD in previous works does not hold anymore.

The experiments with Klein databases corroborated the superiority of Variant II over
Variant I for almost all the metrics. The evaluation in LPBA40 has shown how PDE-LDDMM
based on the deformation state equation performs similarly to SyN for the majority of
metrics with a reduced number of outliers. The evaluation in IBSR18, CUMC12, and
MGH10 datasets has consistently shown lNCC as the best-performing metric for PDE-
LDDMM. It is striking that the optimum DSC values greatly vary depending on the dataset
used for evaluation. For example, SyN obtains an average DSC value greather than 0.7 for
LPBA40 while the average DSC value is close to 0.5 for IBSR18, CUMC12, and MGH10
data. We believe that the disparity of the obtained DSC values depends on the geometry of
the anatomies involved in the dataset which may downgrade the overall accuracy.

Although not being able to report functional Gauss–Newton–Krylov PDE-LDDMM
methods for NGFs and MI has been disappointing, it encourages us to embed PDE-LDDMM
into different optimization methods competing with gradient-descent as Gauss–Newton–
Krylov does for the SSD, NCC, and lNCC metrics. In future work, we will address the
problem with limited-memory BFGS or, in the framework of Krylov subspace methods,
with the generalized minimal residual method (GMRES).

Our method has shown visually acceptable registration results on a challenging multi-
modal intra-subject experiment. The results were competitive with SynthMorph, a deep-
learning method that uses a loss function based on DSC from image segmentations. The
experiment pointed out the differences between the combination of different optimization
methods and metrics. In future work, we will explore in depth the influence of metric and
optimization selection in the accuracy of multi-modal registration.

Despite the methodological improvements that have been subsequently proposed in
PDE-LDDMM for efficiency (Gauss–Newton–Krylov optimization, band-limited parame-
terization, and Semi-Lagrangian Runge–Kutta integration), our PDE-LDDMM methods
are able to compute a diffeomorphism in a volume of size 180× 210× 180 in one to five
minutes, depending on the variant and the metric. This may be considered a non-acceptable
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amount of time in comparison with modern deep-learning approaches where the inference
takes about one second. However, the time and resources needed for training are not usu-
ally considered in the comparison while they should be at least apportioned. In addition,
deep-learning methods are not memory efficient while our proposed methods run in a
commodity graphics card with a VRAM of less than 4 GBs.

BL Variant II with SSD, NCC, and lNCC has been recently included in the diffeomor-
phic normalization step into the pipeline of Spasov et al. [69] for the prediction of stable
vs. progressive mild cognitive impairment (MCI) conversion in Alzheimer’s disease with
multi-task learning and Convolutional Neural Networks [70]. PDE-LDDMM overpassed
ANTS-lNCC for this task, in terms of accuracy, sensitivity, and specificity. ANTS-lNCC
obtained a median accuracy value of 84%, a sensitivity of 88% and specificity of 81%. Vari-
ant II with NCC achieved the best performing accuracy, with a median value of 89%, and
sensitivity and specificity values among the best ones, with a median value of 94% and 91%,
respectively. Indeed, NCC overpassed lNCC metric in this task, despite the comparable
performance achieved by both metrics in the template-based evaluation presented in this
work. As future work, we will perform a comprehensive study to find out the whys behind
the improved performance of a given configuration with respect to the others.

Our PDE-LDDMM method may serve as a benchmark method for the exploration
of different image similarity metrics in the loss function of deep-learning methods. In
addition, it may be a good candidate in applications where there are not enough data to
generate accurate learning-based models. Even more, it may be used as the backbone of
hybrid approaches that combine traditional with modern learning-based models which are
being pointed out as one promising research direction [55].
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Appendix A. Stationary LDDMM

Stationary LDDMM was proposed in [67,71] as a lightweight approach to the original
LDDMM problem proposed in [56]. The method replaces the non-stationary parameteriza-
tion of diffeomorphisms by steady velocity fields and it uses Gauss–Newton optimization
with a block-diagonal approximation of the Hessian matrix. The result is a method close to
the LDDMM foundations and competitive with Diffeomorphic Demons [71,72].
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In a nutshell, St-LDDMM is formulated from the minimization of the energy functional

E(v) =
1
2
‖v‖2

V +
1
σ2 ‖I0 ◦ ϕ−1 − I1‖2

L2 , (A1)

where v ∈ V is an steady velocity field and ϕ is the solution of the transport equation

dϕ

dt
= −v ◦ ϕ, (A2)

that is solved using scaling and squaring [73].
The gradient can be obtained from the first-order Gâteaux derivative of E(v) and the

identity
∂ηE(v) =< ∇vE(v), η >V . (A3)

Thus, for the SSD image similarity metric,

∇vE(v) = v− 2
σ2 K

(
(I0 ◦ ϕ−1 − I1)D(I0 ◦ ϕ−1)

)
. (A4)

The energy gradient can be similarly derived for the different Eimg metrics considered
in this work yielding

∇vE(v) = v− 2
σ2 K

(
αgD(I0 ◦ ϕ−1)

)
, (A5)

where αg is an scalar field corresponding with the differential of the metric with respect
to the residual I0 ◦ ϕ−1 − I1. Table A1 gathers the expressions of αg, which can be easily
identified from the derivations of the PDE-LDDMM methods proposed in this work.

The Hessian can be obtained from the second-order Gâteaux derivative of E(v) and
the identity

∂ηηE(v) =< η, HvE(v)η >V . (A6)

For Gauss–Newton optimization, the Hessian is approximated by a block-diagonal
positive-definite matrix yielding

HvE(v) ≈ Idd +
2
σ2 K

(
D(I0 ◦ ϕ−1)

)
· K
(

D(I0 ◦ ϕ−1)
)

. (A7)

for the SSD metric. For the other Eimg metrics, the energy Hessian is given by

HvE(v) ≈ Idd −
2
σ2 K

(
αhD(I0 ◦ ϕ−1)

)
· K
(

D(I0 ◦ ϕ−1)
)

, (A8)

where αh is a scalar field corresponding with the differential of the scalar field αg. Table A1
gathers the expressions of αh.

St-LDDMM has been included in our comparison in order to demonstrate the superior-
ity of PDE-LDDMM over unconstrained approaches and the correctness of the derivations
of αg and αh for NGFs and Gauss–Newton optimization.
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Table A1. Scalar fields from the gradients and Hessians of St-LDDMM with the different Eimg metrics
considered in this work. The values of A, B, C, and Θ are analogs of the ones derived in the main
manuscript for PDE-LDDMM replacing m(1) with I0 ◦ ϕ−1. The notation (·)ν in lNCC indicates the
restriction of the computation to a neighborhood of size ν.

Metric αg αh

SSD (I0 ◦ ϕ−1 − I1) Id
NCC 2

C

(
A
B Ī1 −

(
A
B

)2
I0 ◦ ϕ−1

)
2
C

(
Θ Ī1 − 2 A

B ΘI0 ◦ ϕ−1 −
(

A
B

)2
)

lNCC
(

2
C

(
A
B Ī1 −

(
A
B

)2
I0 ◦ ϕ−1

))
ν

(
2
C

(
Θ Ī1 − 2 A

B ΘI0 ◦ ϕ−1 −
(

A
B

)2
))

ν

NGFs −2∇ ·
(

A
(BC)2∇I1 −

(
A

B2C

)2
∇(I0 ◦ ϕ−1)

)
2αT · α

MI −∑r,s
1

Nx
∑x

∂ξ
∂r ξ(s− Ī1(x))

(
1 + log

pI0◦ϕ−1,I1
(r,s)

pI0◦ϕ−1 (r)

)
n.a.

Appendix B. Remarks on Normalized Gradient Fields (NGFs) Metric

Unlike NCC and lNCC metrics, the differentiation of λ for NGFs needed in Gauss–
Newton–Krylov optimization yields a complex differential expression for δλ(1). In addi-
tion, the computation of δλ(1) in differential form may yield numerical problems during
the optimization. For these reasons, the differentiation of λ for the computation of δλ(1)
has been approached in this work writing the differential operators in matrix form after
problem discretization, following the ideas in [32].

Thus, let Gx, Gy, and Gz be the matrices associated with the discretization of the partial
differential operators ∂x, ∂y, and ∂z. Recall the expression of λ(1) in Equation (59)

λ(1) = − 2
σ2∇ ·

(
A

(BC)2∇I1 −
(

A
B2C

)2
∇m(1)

)
. (A9)

Using the matrix form of the gradient ∇ and the divergence ∇· operators, λ(1) can be
written as

λ(1) =
(

A
(BC)2 I1 � Gx−

(
A

B2C

)2
m(1)� Gx

)
� Gx (A10)

+

(
A

(BC)2 I1 � Gy−
(

A
B2C

)2
m(1)� Gy

)
� Gy

+

(
A

(BC)2 I1 � Gz−
(

A
B2C

)2
m(1)� Gz

)
� Gz

where � represents the Hadamard matrix product. Then, denoting by Λ the matrix
representation of λ(1), the Gauss–Newton approximation of δλ(1) can be computed from

δλ(1) = dm(1)T · (ΛT · 2Id ·Λ). (A11)

Figure A1 shows the block-diagonal pattern of the matrix ΛT · 2Id ·Λ, involved in the
computation of δλ(1). The matrix is a band matrix with twenty-five not-null diagonals.
The distribution of not-null diagonals involves one central pentadiagonal structure, two
symmetrically located tridiagonal structures, and the remaining symmetrically located
diagonals up to completing the twenty-five diagonals of the band structure. The complexity
of the diagonal pattern gives an idea of the complexity of the stencil associated with the
differential expression for δλ(1).
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Figure A1. Block-diagonal pattern of the first 100× 100 elements of the matrix (ΛT · 2Id ·Λ).
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Inspired on the simpler block-diagonal structure of the Gauss–Newton version of
St-LDDMM proposed in [67], we have compared the performance of NGFs PDE-LDDMM
using diagonal, penta-diagonal, and all-diagonal truncations of (ΛT · 2Id ·Λ). Figure A2
shows the DSC metrics obtained by the different methods in NIREP16. The figure shows
that the diagonal approximation slightly outperforms the penta- and full-diagonal approxi-
mations for both Variant I and II. The performance of the method with the diagonal approx-
imation shows an identical distribution between the spatial variants and approximately
identical between the BL variants. For Variant I, the performance of Gauss–Newton–Krylov
optimization is similar to gradient-descent optimization. However, for Variant II, the
performance of gradient-descent optimization is strikingly superior.

Table A2 shows the mean and the standard deviation of MSErel , ‖g‖∞,rel , and the
extrema of the Jacobian determinant obtained with the methods. For the spatial methods,
gradient descent obtains the lowest MSErel values. For the BL methods, Gauss–Newton
with the diagonal truncation shares the lowest MSErel values with gradient descent. The
Jacobians reach more extreme values for the Gauss–Newton methods. These results break
with the trend that we have observed for SSD and NCC-like metrics and open the possibility
that, in some cases, gradient-descent finds better performing minima than Gauss–Newton–
Krylov and it is, therefore, a preferable option.
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Figure A2. NIREP16. Volume overlap obtained by the NGFs PDE-LDDMM methods considered
in this work. Methods differ on the approximation used for matrix (ΛT · 2Id ·Λ): diagonal, penta-
diagonal, and full-diagonal.

Multi-resolution
Metric MSErel ‖g‖∞,rel min(J(φv

1 )
−1) max(J(φv

1 )
−1)

SP Variant I, NGFs, GD 22.98± 2.54 0.56± 0.66 0.14± 0.05 4.57± 0.46
SP Variant I, NGFs, GN, FD 29.08± 2.55 0.66± 0.26 0.05± 0.04 6.99± 1.74
SP Variant I, NGFs, GN, PD 28.86± 3.32 0.64± 0.17 0.04± 0.02 8.95± 2.32
SP Variant I, NGFs, GN, D 27.22± 2.31 0.68± 0.24 0.03± 0.02 8.96± 1.75
SP Variant II, NGFs, GD 20.63± 2.78 0.57± 0.28 0.23± 0.05 6.88± 1.59

SP Variant II, NGFs, GN, FD 24.20± 2.41 0.84± 0.15 0.23± 0.03 4.76± 1.08
SP Variant II, NGFs, GN, PD 23.92± 3.02 0.94± 0.08 0.20± 0.03 7.04± 2.20
SP Variant II, NGFs, GN, D 23.42± 2.74 0.85± 0.16 0.19± 0.03 7.38± 2.40

BL Variant I, NGFs, GD 24.38± 2.65 0.08± 0.02 0.21± 0.06 5.41± 0.85
BL Variant I, NGFs, GN, FD 24.10± 2.96 0.30± 0.15 0.09± 0.02 9.62± 1.90
BL Variant I, NGFs, GN, PD 23.45± 2.47 0.33± 0.19 0.09± 0.02 12.93± 3.35
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BL Variant II, NGFs, GD 21.32± 2.80 0.09± 0.05 0.22± 0.05 5.82± 0.96

BL Variant II, NGFs, GN, FD 23.04± 2.25 0.51± 0.20 0.07± 0.02 7.72± 2.24
BL Variant II, NGFs, GN, PD 22.39± 2.28 0.47± 0.23 0.08± 0.02 7.66± 1.49
BL Variant II, NGFs, GN, D 21.98± 2.14 0.53± 0.32 0.07± 0.02 8.16± 1.50

Table A2. NIREP16. Convergence results. Mean and standard deviation of the relative image
similarity error expressed in % (MSErel), the relative gradient magnitude (‖g‖∞,rel), and the Jacobian
determinant extrema associated with the transformation (φv
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Table A2. NIREP16. Convergence results. Mean and standard deviation of the relative image
similarity error expressed in % (MSErel), the relative gradient magnitude (‖g‖∞,rel), and the Jacobian
determinant extrema associated with the transformation (φv

1)
−1.

Multi-Resolution

Metric MSErel ‖g‖∞,rel min(J(φv
1 )
−1) max(J(φv

1 )
−1)

SP Variant I, NGFs, GD 22.98 ± 2.54 0.56 ± 0.66 0.14 ± 0.05 4.57 ± 0.46
SP Variant I, NGFs, GN, FD 29.08 ± 2.55 0.66 ± 0.26 0.05 ± 0.04 6.99 ± 1.74
SP Variant I, NGFs, GN, PD 28.86 ± 3.32 0.64 ± 0.17 0.04 ± 0.02 8.95 ± 2.32
SP Variant I, NGFs, GN, D 27.22 ± 2.31 0.68 ± 0.24 0.03 ± 0.02 8.96 ± 1.75

SP Variant II, NGFs, GD 20.63 ± 2.78 0.57 ± 0.28 0.23 ± 0.05 6.88 ± 1.59
SP Variant II, NGFs, GN, FD 24.20 ± 2.41 0.84 ± 0.15 0.23 ± 0.03 4.76 ± 1.08
SP Variant II, NGFs, GN, PD 23.92 ± 3.02 0.94 ± 0.08 0.20 ± 0.03 7.04 ± 2.20
SP Variant II, NGFs, GN, D 23.42 ± 2.74 0.85 ± 0.16 0.19 ± 0.03 7.38 ± 2.40

BL Variant I, NGFs, GD 24.38 ± 2.65 0.08 ± 0.02 0.21 ± 0.06 5.41 ± 0.85
BL Variant I, NGFs, GN, FD 24.10 ± 2.96 0.30 ± 0.15 0.09 ± 0.02 9.62 ± 1.90
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BL Variant II, NGFs, GN, PD 22.39 ± 2.28 0.47 ± 0.23 0.08 ± 0.02 7.66 ± 1.49
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