6 research outputs found

    Applying Hessian Curves in Parallel to Improve Elliptic Curve Scalar Multiplication Hardware

    Get PDF
    As a public key cryptography, Elliptic Curve Cryptography (ECC) is well known to be the most secure algorithms that can be used to protect information during the transmission. ECC in its arithmetic computations suffers from modular inversion operation. Modular Inversion is a main arithmetic and very long-time operation that performed by the ECC crypto-processor. The use of projective coordinates to define the Elliptic Curves (EC) instead of affine coordinates replaced the inversion operations by several multiplication operations. Many types of projective coordinates have been proposed for the elliptic curve E: y2 = x3 + ax + b which is defined over a Galois field GF(p) to do EC arithmetic operations where it was found that these several multiplications can be implemented in some parallel fashion to obtain higher performance. In this work, we will study Hessian projective coordinates systems over GF (p) to perform ECC doubling operation by using parallel multipliers to obtain maximum parallelism to achieve maximum gain

    Reconsidering big data security and privacy in cloud and mobile cloud systems

    Get PDF
    Large scale distributed systems in particular cloud and mobile cloud deployments provide great services improving people\u27s quality of life and organizational efficiency. In order to match the performance needs, cloud computing engages with the perils of peer-to-peer (P2P) computing and brings up the P2P cloud systems as an extension for federated cloud. Having a decentralized architecture built on independent nodes and resources without any specific central control and monitoring, these cloud deployments are able to handle resource provisioning at a very low cost. Hence, we see a vast amount of mobile applications and services that are ready to scale to billions of mobile devices painlessly. Among these, data driven applications are the most successful ones in terms of popularity or monetization. However, data rich applications expose other problems to consider including storage, big data processing and also the crucial task of protecting private or sensitive information. In this work, first, we go through the existing layered cloud architectures and present a solution addressing the big data storage. Secondly, we explore the use of P2P Cloud System (P2PCS) for big data processing and analytics. Thirdly, we propose an efficient hybrid mobile cloud computing model based on cloudlets concept and we apply this model to health care systems as a case study. Then, the model is simulated using Mobile Cloud Computing Simulator (MCCSIM). According to the experimental power and delay results, the hybrid cloud model performs up to 75% better when compared to the traditional cloud models. Lastly, we enhance our proposals by presenting and analyzing security and privacy countermeasures against possible attacks

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    Mobile Cloud Computing Model and Big Data Analysis for Healthcare Applications

    Get PDF
    Mobile devices are increasingly becoming an indispensable part of people\u27s daily life, facilitating to perform a variety of useful tasks. Mobile cloud computing integrates mobile and cloud computing to expand their capabilities and benefits and overcomes their limitations, such as limited memory, CPU power, and battery life. Big data analytics technologies enable extracting value from data having four Vs: volume, variety, velocity, and veracity. This paper discusses networked healthcare and the role of mobile cloud computing and big data analytics in its enablement. The motivation and development of networked healthcare applications and systems is presented along with the adoption of cloud computing in healthcare. A cloudlet-based mobile cloud-computing infrastructure to be used for healthcare big data applications is described. The techniques, tools, and applications of big data analytics are reviewed. Conclusions are drawn concerning the design of networked healthcare systems using big data and mobile cloud-computing technologies. An outlook on networked healthcare is given
    corecore