9 research outputs found

    Query Rewriting in Itemset Mining

    Get PDF
    Abstract. In recent years, researchers have begun to study inductive databases, a new generation of databases for leveraging decision support applications. In this context, the user interacts with the DBMS using advanced, constraint-based languages for data mining where constraints have been specifically introduced to increase the relevance of the results and, at the same time, to reduce its volume. In this paper we study the problem of mining frequent itemsets using an inductive database 1 . We propose a technique for query answering which consists in rewriting the query in terms of union and intersection of the result sets of other queries, previously executed and materialized. Unfortunately, the exploitation of past queries is not always applicable. We then present sufficient conditions for the optimization to apply and show that these conditions are strictly connected with the presence of functional dependencies between the attributes involved in the queries. We show some experiments on an initial prototype of an optimizer which demonstrates that this approach to query answering is not only viable but in many practical cases absolutely necessary since it reduces drastically the execution time

    Optimization of Association Rules Extraction Through Exploitation of Context Dependent Constraints

    Get PDF
    Abstract. In recent years, the KDD process has been advocated to be an iterative and interactive process. It is seldom the case that a user is able to answer immediately with a single query all his questions on data. On the contrary, the workflow of the typical user consists in several steps, in which he/she iteratively refines the extracted knowledge by inspecting previous results and posing new queries. Given this view of the KDD process, it becomes crucial to have KDD systems that are able to exploit past results thus minimizing computational effort. This is expecially true in environments in which the system knowledge base is the result of many discoveries on data made separately by the collaborative effort of different users. In this paper, we consider the problem of mining frequent association rules from database relations. We model a general, constraint-based, mining language for this task and study its properties w.r.t. the problem of re-using past results. In particular, we individuate two class of query constraints, namely "item dependent" and "context dependent" ones, and show that the latter are more difficult than the former ones. Then, we propose two newly developed algorithms which allow the exploitation of past results in the two cases. Finally, we show that the approach is both effective and viable by experimenting on some datasets

    Book reports

    Get PDF

    Query rewriting in itemset mining

    Get PDF
    Abstract. In recent years, researchers have begun to study inductive databases, a new generation of databases for leveraging decision support applications. In this context, the user interacts with the DBMS using advanced, constraint-based languages for data mining where constraints have been specifically introduced to increase the relevance of the results and, at the same time, to reduce its volume. In this paper we study the problem of mining frequent itemsets using an inductive database 1 . We propose a technique for query answering which consists in rewriting the query in terms of union and intersection of the result sets of other queries, previously executed and materialized. Unfortunately, the exploitation of past queries is not always applicable. We then present sufficient conditions for the optimization to apply and show that these conditions are strictly connected with the presence of functional dependencies between the attributes involved in the queries. We show some experiments on an initial prototype of an optimizer which demonstrates that this approach to query answering is not only viable but in many practical cases absolutely necessary since it reduces drastically the execution time

    Representing and querying regression models in a relational database management system

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 77-79).Curve fitting is a widely employed, useful modeling tool in several financial, scientific, engineering and data mining applications, and in applications like sensor networks that need to tolerate missing or noisy data. These applications need to both fit functions to their data using regression, and pose relational-style queries over regression models. Unfortunately, existing DBMSs are ill suited for this task because they do not include support for creating, representing and querying functional data, short of brute-force discretization of functions into a collection of tuples. This thesis describes FunctionDB, a novel DBMS that extends the state of the art. FunctionDB treats functions output by regression as first-class citizens that can be queried declaratively and manipulated like traditional database relations. The key contributions of FunctionDB are a compact, algebraic representation for regression models as piecewise functions, and an algebraic query processor that executes declarative queries directly on this representation as combinations of algebraic operations like function inversion, zero finding and symbolic integration. FunctionDB is evaluated on two real world data sets: measurements from a temperature sensor network, and traffic traces from cars driving on Boston roads. The results show that operating in the functional domain has substantial accuracy advantages (over 15% for some queries) and order of magnitude (10x-100x) performance gains over existing approaches that represent models as discrete collections of points. The thesis also describes an algorithm to maintain regression models online, as new raw data is inserted into the system. The algorithm supports a sustained insertion rate of the order of a million records per second, while generating models no less compact than a clairvoyant (offline) strategy.by Arvind Thiagarajan.S.M

    Forecasting in Database Systems

    Get PDF
    Time series forecasting is a fundamental prerequisite for decision-making processes and crucial in a number of domains such as production planning and energy load balancing. In the past, forecasting was often performed by statistical experts in dedicated software environments outside of current database systems. However, forecasts are increasingly required by non-expert users or have to be computed fully automatically without any human intervention. Furthermore, we can observe an ever increasing data volume and the need for accurate and timely forecasts over large multi-dimensional data sets. As most data subject to analysis is stored in database management systems, a rising trend addresses the integration of forecasting inside a DBMS. Yet, many existing approaches follow a black-box style and try to keep changes to the database system as minimal as possible. While such approaches are more general and easier to realize, they miss significant opportunities for improved performance and usability. In this thesis, we introduce a novel approach that seamlessly integrates time series forecasting into a traditional database management system. In contrast to flash-back queries that allow a view on the data in the past, we have developed a Flash-Forward Database System (F2DB) that provides a view on the data in the future. It supports a new query type - a forecast query - that enables forecasting of time series data and is automatically and transparently processed by the core engine of an existing DBMS. We discuss necessary extensions to the parser, optimizer, and executor of a traditional DBMS. We furthermore introduce various optimization techniques for three different types of forecast queries: ad-hoc queries, recurring queries, and continuous queries. First, we ease the expensive model creation step of ad-hoc forecast queries by reducing the amount of processed data with traditional sampling techniques. Second, we decrease the runtime of recurring forecast queries by materializing models in a specialized index structure. However, a large number of time series as well as high model creation and maintenance costs require a careful selection of such models. Therefore, we propose a model configuration advisor that determines a set of forecast models for a given query workload and multi-dimensional data set. Finally, we extend forecast queries with continuous aspects allowing an application to register a query once at our system. As new time series values arrive, we send notifications to the application based on predefined time and accuracy constraints. All of our optimization approaches intend to increase the efficiency of forecast queries while ensuring high forecast accuracy
    corecore