
Representing and Querying Regression Models in a

Relational Database Management System

by

Arvind Thiagarajan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2007

© Massachusetts Institute of Technology 2007. All rights reserved.

Author.........................
Department of Electrical

Certified by

Engineering and Computer Science
August 10, 2007

. .
Samuel Madden

Associate Professor, MIT EECS
Thesis Supervisor

Certified by

)

Accepted by............

MASSACHUSETTS INSTITMffE
OF TEOHNOLOGY

OCT 2 2007

LIBRARIES

Hari Balakrishnan
Professor, MIT EECS

or

Chairman, Department Committee on Graduate Students

BARKER

Representing and Querying Regression Models in a Relational

Database Management System

by

Arvi nd Thiagarajan

Submitted to the Department of Electrical Engineering and Computer Science
on August 10, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Curve fitting is a widely employed, useful modeling tool in several financial, scientific,
engineering and data mining applications, and in applications like sensor networks that
need to tolerate missing or noisy data. These applications need to both fit functions to their
data using regression, and pose relational-style queries over regression models.

Unfortunately, existing DBMSs are ill suited for this task because they do not include
support for creating, representing and querying functional data, short of brute-force dis-
cretization of functions into a collection of tuples. This thesis describes FunctionDB, a
novel DBMS that extends the state of the art. FunctionDB treats functions output by re-
gression as first-class citizens that can be queried declaratively and manipulated like tradi-
tional database relations. The key contributions of FunctionDB are a compact, algebraic
representation for regression models as piecewise functions, and an algebraic query pro-
cessor that executes declarative queries directly on this representation as combinations of
algebraic operations like function inversion, zero finding and symbolic integration.

FunctionDB is evaluated on two real world data sets: measurements from a temperature
sensor network, and traffic traces from cars driving on Boston roads. The results show that
operating in the functional domain has substantial accuracy advantages (over 15% for some
queries) and order of magnitude (IOx-100x) performance gains over existing approaches
that represent models as discrete collections of points. The thesis also describes an algo-
rithm to maintain regression models online, as new raw data is inserted into the system. The
algorithm supports a sustained insertion rate of the order of a million records per second,
while generating models no less compact than a clairvoyant (offline) strategy.

Thesis Supervisor: Samuel Madden
Title: Associate Professor, MIT EECS

Thesis Supervisor: Hari Balakrishnan
Title: Professor, MIT EECS

2

Acknowledgments

I would like to thank my advisors, Sam Madden and Hari Balakrishnan, for introducing me

to research and helping me sample and find interesting problems to work on.

It was a great experience working with Sam on FunctionDB: he was always willing to

spend time and meet with me weekly, and this thesis would not have been possible without

his advice, feedback, encouragement and constant help with bouncing ideas and directions

off him.

I am also very grateful to Hari, who has always been exciting and lively to work with,

thanks to his knack for spotting problems/issues early on, and never failing to come up with

challenging questions which cut to the heart of the problem we were working on. Hari's

comments and feedback after a group meeting talk I gave were particularly helpful to polish

my work and round off this thesis.

I would like to thank Mike Ahern, who worked with me on the original class project idea

that ultimately became this thesis, and contributed a lot by way of ideas, design discussions

and feedback.

I would like to thank Vlad, Bret, Yang and Jakob from the Cartel project who were very

helpful with sharing their datasets, which contributed substantially to the experiments in

this thesis, as well as their expertise.

I also thank all my office mates at MIT - Mike, Mythili, Jakob and Emil, as well as many

friends in G9 and CSAIL (too numerous to name) with whom I've had many stimulating

conversations and discussions, and who helped make MIT a really great place to work at.

I thank my parents and grandparents for their unconditional support and encouragement

at all times.

3

Contents

1 Introduction 9

1.1 Contributions . 12

2 Example Applications and Queries 13

2.1 Indoor Sensor Network . 13

2.1.1 Application Scenario . 13

2.1.2 FunctionDB View Definition . 15

2.1.3 Queries . 18

2.2 Spatial Queries on Car Trajectories . 20

2.2.1 Application Scenario . 20

2.2.2 FunctionDB View Definition and Queries 20

3 Representation and Data Model 24

3.1 Piecewise Functions . 24

3.2 Relational Algebra and Query Semantics 27

3.2.1 Semantics of Query Results . 27

3.2.2 Semantics of Individual Operators 29

3.2.3 Selection . 29

3.2.4 Projection . 30

3.2.5 Join . 30

3.2.6 Aggregate Operators . 30

3.3 Discussion . 31

3.4 Future Work: Higher Dimensions . 32

4

4 Query Processor 34

4.1 Extensible Function Framework ..34

4.2 Expressions and Type Inference ..37

4.3 Operators ..37

4.3.1 Selection . 38

4.3.2 Join ..39

4.3.3 Indexing . 44

4.3.4 Aggregate Operators . 44

4.3.5 Grouping Operators . 46

4.4 Evaluation . 46

4.4.1 Experimental Methodology . 47

4.4.2 Part A: Temperature Sensor Application 48

4.4.3 Part B: Car Trajectory Application 53

4.4.4 Part C: Validating Model Quality 56

5 Updates 59

5.1 Design Goals . 60

5.1.1 Model Quality . 60

5.1.2 Update Performance . 61

5.2 The BSearch algorithm . 62

5.3 Evaluation . 66

5.3.1 Update Performance . 67

5.3.2 Fit Quality . 69

5.3.3 Comparison to TopDown Algorithm 70

5.3.4 Tuning Updates in FunctionDB 72

6 Related Work 73

7 Conclusion 76

5

List of Figures

2-1 Temperature recorded by a sensor in the Intel Lab plotted as a function of

tim e. 16

2-2 Trajectory of a car driving near Boston. The points represent raw GPS data,

and the line segments illustrate our regression fit to interpolate the data. . . 21

2-3 Bounding box query on trajectory data benefits from regression. 23

3-1 Raw data, corresponding function table, and result of a SELECT * query. . . 26

4-1 1 0-second moving averages over 25 minutes of temperature data, computed

over raw data and over a piecewise linear regression model with Func-

tionDB. The spikes in the average are errors due to missing data, which are

corrected by regression. 49

4-2 Performance of FunctionDB compared to gridding with different grid sizes,

on histogram query. The base grid size, "GridRaw", is equal to the aver-

age spacing of raw temperatures (1 sec). The other three grid sizes are

successively larger multiples of this spacing (2 sec, 4 sec, 8 sec). 50

4-3 Discretization error (% deviation from algebraic answer) due to gridding,

as a function of grid size, averaged over all bins for the histogram query. 51

4-4 Selection performance of FunctionDB compared to gridding with output

grid size I second, for 3 values of selectivity: 70%, 20% and 2%. Algebraic

processing is a win for selective queries, which do not grid much data for

display. 53

4-5 Lining up two trajectories using a grid approach. 55

6

4-6 CDF of discretization error for two different grid sizes on trajectory simi-

larity query, computed over query trajectories. The error distribution has a

significant tal. 56

4-7 Performance of FunctionDB on the trajectory similarity query, compared

to gridding with different grid sizes. As before, the grid sizes are multiples

(lx, 2x, 4x, 8x) of the average spacing of raw data in the data set. 57

4-8 Cross Validation (Gap Prediction) Error and Total Error, as a function of

the number of missing raw data observations. 58

5-1 Example raw data and corresponding function table. 64

5-2 Performance benefit due to batch updates. 68

5-3 Model size penalty due to limited history, for different batch sizes. 69

5-4 Dependence of model size on error threshold. 70

5-5 Size of models generated by BSe arch compared to a simple top-down seg-

mentation algorithm, TopDown. 71

7

List of Tables

3.1 Discrete aggregates and their FunctionDB counterparts. 31

4.1 Commonly used relational operators and algebraic primitives that can be

used to execute them. F, F1, F2 denote function tables, x, x1, x2 denote

independent variables, y denotes a dependent variable, and a, a, and a2

denote constants (query parameters). 36

8

Chapter 1

Introduction

Relational databases have traditionally taken the view that the data they store is a set of

discrete observations. This is clearly reasonable when storing individual facts, such as the

salary of an employee or the description of a product. However, when representing time- or

space- varying data, such as a series of temperature observations, the trajectory of a moving

object, or a history of salaries over time, a set of discrete points is often neither the most

intuitive nor compact representation. For researchers in many fields, from social sciences

to biology to finance [15-17], a common first step in understanding a set of data points

is to model those points as a collection of curves, typically generated using some form of

regression (curve fitting). Regression, a form of modeling, helps smooth over errors and

gaps in raw data points, yields a compact and more accurate representation of those points

as a few parameters, and provides insight into the data by revealing trends and outliers.

Many of the applications mentioned above, in addition to fitting models, need to ask

relational-style queries after regression has been applied to their input data. For example,

a sensor network monitoring an environmental variable like temperature or pressure may

need to know when the variable crosses a threshold (a selection query), when the variable

differs sharply between nearby locations (a join query), or the value of the variable averaged

over time windows or geographic regions (an aggregate query). However, in the context of

these applications, it is not desirable or feasible to directly query raw data. This is because

raw data are either missing, noisy or simply unavailable in many situations. For example, in

the sensor network application, it may be necessary to interpolate or extrapolate the data to

9

predict sensor readings at locations where sensors are not physically deployed. Also, cheap

sensors can occasionally fail or malfunction, or report garbage values due to low batteries

and other anomalies. These outliers or garbage values need to be eliminated or smoothed

by modeling.

Mathematical and scientific packages like MATLAB, Mathematica, Octave and R [1-4]

do support creating regression models. However, these tools lack support for declarative

or relational queries. Queries typically need to be implemented as custom scripts in MAT-

LAB, or in languages like Perl. A related concern is that tools like MATLAB do not provide

a seamless way to interact with data already stored in a DBMS. Data from a relational ta-

ble needs to be manually imported into MATLAB in order to fit a regression model to

it. Once a model has been fit to the data, it can be used to make predictions or compute

the interpolated value of a function at specific points from within MATLAB, but this code

lives in custom scripts, which do not provide any of the benefits of storing the data within

a modern database system - for example, declarative queries, indexability, optimizability,

transactions and recoverability, and integration with other data in the DBMS.

In order to solve this problem, this thesis proposes to push first-class support for re-

gression models into a relational DBMS. This thesis presents FunctionDB, a system that

allows users to directly query the functions output by regression inside a database system.

By pushing this support into the database, rather than requiring the use of an external curve

fitting and analysis tool, users can manage and query these models declaratively just like

any other data, providing the benefits of declarative queries, indexability, and integration

with existing database data.

Thus, FunctionDB is designed to help users who need to use regression models to man-

age their data, particularly when the raw data is noisy or has missing values. FunctionDB

is essentially a relational database system with support for special tables that can contain

functions, in addition to standard tables with raw (discrete) data. In addition to manag-

ing raw data, FunctionDB provides users with tools to fit that raw data with one or more

functions. For example, FunctionDB might represent the points (t = 1, x = 5), (t = 2, x =

7), (t = 3, x = 9) as the function x(t) = 2t + 3.

Once in this curve domain, it is natural to ask questions over the fit data directly, look-

10

ing, for example, for curves that intersect, are confined within a certain area, or that have

the maximum slope. Accordingly, FunctionDB allows users to pose familiar relational and

declarative queries (e.g., filters, joins, maps and aggregates) directly over functions. To

this end, FunctionDB includes a novel algebraic query processor that executes relational

queries on such functions by using direct symbolic algebra (e.g., solving symbolic equa-

tions, symbolic integration and symbolic differentiation).

This thesis shows how relational and declarative operations traditionally supported by

DBMSs are translated to algebraic manipulations in this functional domain. As a simple

example, a selection query that finds the time when the temperature of a sensor whose

value is described by the equation x(t) = 2t + 3 crosses the line x = 5 requires solving

the linear equation 5 = 2t + 3 to find t = 1. Similarly, the symbolic analogs for aggregate

queries and join queries, while more complex than simple filters, can be described in terms

of integration and function inversion respectively.

The most closely related work to this thesis is the MauveDB system [7], which also

proposes to integrate models directly into a database system, but performs query processing

over those models by storing them as gridded data points that can be fed directly into

existing relational operators. For example, a curve like y(x) = 2x + 1 would be represented

as a set of discrete data points in MauveDB - e.g., (0, 1), (1, 3), (2,5)..., which can then be

queried. In contrast, though FunctionDB also supports gridding to expose answers to users

in the traditional format, the actual query processing is done directly over functions (and

hence ungridded data), which yields order of magnitude efficiency gains, and substantial

accuracy gains over the MauveDB approach, as this thesis demonstrates.

FunctionDB is also related to constraint databases and constraint query languages [20,

21], which were first proposed in the context of spatial database systems, and allow users

to pose queries over systems of algebraic constraints. In contrast to constraint databases,

FunctionDB views query processing in terms of algebraic primitives applied to functions,

rather than in terms of solving systems of constraints. As this thesis shows, this restriction

enables a simpler design and data model that are more extensible to a variety of regression

functions.

I I

1.1 Contributions

" We propose a compact representation for regression models as collections of piece-

wise functions, and a novel algebraic query processor that operates directly on this

representation without first "materializing" functions into discrete data points.

" We show how to describe relational query processing operators in terms of algebraic

primitives applied to functions, including function evaluation, zero finding, inversion

and symbolic integration. The framework and algorithms proposed in this thesis are

confined to functions of a single variable, but the system gracefully degrades to exe-

cute queries approximately (with well defined semantics) on functions of more than

one variable, and on functions for which symbolic query evaluation is not feasible.

" For the case of one-dimensional time series data, we propose and evaluate an algo-

rithm for online model maintenance as new raw data is inserted into the system. The

algorithm supports leverages batch updates to avoid rerunning the regression fit for

each new record inserted into FunctionDB.

" We evaluate the query processing and update algorithms used in FunctionDB using

two real world data sets: a collection of temperature data from 54 temperature sen-

sors in a building deployment, and a collection of GPS traffic traces collected from

cars driving on Boston roads, from the Cartel [8] project at MIT. We find that Func-

tionDB achieves order of magnitude (by a factor of lOx- 1 00x) better performance for

aggregate queries and substantial savings (by a factor of 2x-4x) for other selective

queries, when compared to approaches that represent and process regression models

as discrete points. Also, we show that modeling raw data using FunctionDB can help

interpolate a significant amount of missing data with high accuracy (up to 1 minute

of GPS readings in the traffic trace experiment), thus providing more accurate results

than query processing over raw data. Finally, we demonstrate that batching inser-

tions enables FunctionDB to support a sustained (in-memory) insertion throughput

of the order of a million records per second, which should be sufficient for many

applications of interest.

12

Chapter 2

Example Applications and Queries

This chapter introduces and motivates FunctionDB through two applications: an indoor

sensor network and an application that analyzes data from car trajectories. Queries for both

applications are illustrated in the FunctionDB query language, which is essentially standard

SQL with extensions to support regression. Real data and queries from these applications

are also used in the evaluation (presented in Chapter 4).

2.1 Indoor Sensor Network

2.1.1 Application Scenario

In this application, a network of temperature sensors are placed on the floor of a building.

Each sensor produces a time series of temperature observations. We use real data from an

indoor sensor deployment at Intel Research, Berkeley that monitors several environmental

variables, including temperature and humidity.

Below, we consider several queries that users of this application might want to ask:

1. What is the temperature at a particular sensor location at a given time?

2. At what times is the heating insufficient? For example, does the temperature drop

below 18'C anywhere, and when?

13

3. Compute the average of temperature at a particular location over a specified time

window (i.e., between times ti and t2).

4. Over a longer time scale (like a day) what does the histogram of temperature with

time look like at a particular location? Equivalently, retrieve a histogram of tem-

peratures ordered by the duration of time for which the location experiences that

temperature. This might help detect locations prone to getting hot at particular times

of the day when they face the sun.

Using a regression model to fit the temperature data is useful in this application for two

reasons. First, radios on sensor nodes lose packets (sometimes as high as 15-20%). Second,

nodes themselves fail (e.g., when batteries are low), producing no readings or even garbage

data. Hence, this application needs to cope with missing, as well as incorrect and noisy

data.

While interpolation can be accomplished by simple averaging, regression is a more ro-

bust alternative and provides more insight into the data. Regression takes as input a dataset

with two or more correlated variables (like time and temperature), and produces as output

a formula for one or more of the variables, termed the dependent variables, as a function

of the other variables, termed the independent variables. The aim of regression is to pro-

duce a model that approximates the ground truth data with as little error as possible. In

cases where the raw data is known to be accurate and is hence the ground truth, regression

serves as a compact approximation to the raw data, as well as helping interpolate gaps in

the data. In other situations, such as the temperature application considered in this section,

where the raw data itself is noisy due to measurement errors and/or outliers, a scientifically

motivated regression model (constructed with prior knowledge of trends in the dataset) can

help smooth over measurement error.

The simplest and most common algorithm used to fit regression models to raw data

is linear regression. Linear regression takes a set of basis functions of the independent

variable(s) e.g., x, x2 3 and computes coefficients for each of the basis functions (say

a,b,c) such that the sum of the products of the basis functions and their coefficients (ax +

bx 2 +cx 3) produces a minimum-error fit for an input vector of raw data, X. Performing linear

14

regression is equivalent to performing Gaussian elimination on a matrix of size JFl x IFI,

where JFl is the number of basis functions used.

As an example, a linear regression function might approximate the raw data points (x

= 0, y = 0.1), (x = 1, y = 0.9), (x = 2, y = 2.2), (x = 3, y = 2.9), (x = 4, y = 4), (x = 5, y =

4.9) with the line y = x + 1.

In the temperature application example, a regression model for temperature (the depen-

dent variable) as a function of time (independent variable) is preferable to simple averaging,

for two reasons. First, regression models the underlying phenomenon, which is a continu-

ous function of time. Interpolation and extrapolation both fit naturally into this framework.

Second, when there is sufficient data, regression is less prone to outliers compared to local

averaging.

A standard way to use regression when modeling data is to first segment data into re-

gions within which it exhibits regularity or a well-defined trend, and then choose basis

functions that are most appropriate to fit the data in each region. We term this process

piecewise regression.

Figure 2-1 illustrates piecewise linear regression for temperature data from one of the

sensors in the Intel Lab deployment. The plot shows a snapshot of temperature data from

one of the sensors in the Intel Lab dataset, and a piecewise linear regression model that

has been fit to the observed data. Each linear piece is defined over a time interval, and

captures an increasing or decreasing trend in temperature over that interval (the temperature

increases during the morning and decreases later in the day).

2.1.2 FunctionDB View Definition

This section shows how creating a regression view of temperature data can be accom-

plished with FunctionDB, and illustrates how each of the queries mentioned in the previ-

ous section would be expressed in the FunctionDB query language. We assume that raw

temperatures are stored in a standard relational table, tempdata and the schema looks like

<ID, x, y, time, temp> - where ID is the ID of the sensor that made the measurement,

(x,y) are coordinates that specify the sensor location, time is the time of measurement,

15

Piecewise Linear Model For Room Temperature

1000 1500
Time (minutes)

Figure 2-1: Temperature recorded by a sensor in the Intel Lab plotted as a function of time.

and temp is the actual temperature measurement.

The MauveDB system [7] introduces extensions to SQL to fit a regression view to data

already in a relational table. The FunctionDB syntax is similar to that syntax. The Func-

tionDB query to fit a piecewise linear model of temperature as a function of time to the

readings in tempdata looks like:

CREATE VIEW timemodel

AS FIT temp OVER time

USING FUNCTION Line2D

USING PARTITION FindPeaks, 0.1

TRAINING.DATA SELECT temp, time FROM tempdata

GROUP ON tid, x, y

This query instructs the DBMS to fit a regression model, timemodel, to the data in tempdata,

using the column temp as the dependent variable, and data from time as the independent

variable. This model can be queried like any relational table with the schema <temp, time>.

The USING FUNCTION clause in the above query specifies the type of regression func-

16

egData point
_~- Regression

24

23

22

0
2 1

)

0)20

19

E 18
(D

17

500 2000 2500 3000

model

I 0

tion to use to fit the data - in this case, Line2D, which represents a line segment in 2D

space.

The USING PARTITION clause tells the DBMS how to segment (partition) the data into

regions within which to fit different regression functions. This example uses FindPeaks,

a very simple in-built segmentation algorithm that finds peaks and valleys in temperature

data and segments the data at these extrema. The parameter (0. 1) to FindPeaks specifies

how aggressive the algorithm should be about segmenting data into pieces. The choice of

segmentation algorithm also determines how the regression view is updated when raw data

is inserted or modified.

Finally, the TRAININGDATA clause specifies the data used to train the regression model,

which in this case consists of the readings from the table tempdata. The GROUP ON clause

specifies that different models should be fit to data with different trajectory identifiers or dif-

ferent locations i.e., different tid, x or y. This clause also automatically implies that tid,

x and y will appear as non-model attributes in the resulting regression view, timemodel.

The segmentation algorithm, choice of model, and parameters used for fitting that

appear in the USING FUNCTION and USING PARTITION clauses have important conse-

quences for query accuracy and performance. A segmentation algorithm that is more ag-

gressive about segmenting data into pieces (to fit the data better) results in a less compact

representation, and hence worse query performance, while a less aggressive algorithm can

mean better query performance, but a poorer fit. An extremely aggressive algorithm can

also, somewhat paradoxically, be a bad idea because it can result in overfitting - the ex-

treme example being a line segment joining every successive pair of points in the dataset.

For this reason, the choice of model and parameters is quite complex, and can often depend

considerably on application-specific criteria, like generalization performance, or corrobo-

ration by external or theoretical evidence.

Since the most appropriate choice for the basis functions used by a regression model

often needs to be data or application dependent as explained above, a restricted set of built-

in functions (e.g. lines or polynomials) is unlikely to prove sufficient. Therefore, this thesis

proposes a query processor that enables users to create and add new classes of regression

functions (Section 4.1).

17

In general, the choice of regression model has three aspects: the segmentation algorithm

used for partitioning the data, the form of basis functions used to fit the data in each segment

(e.g., linear, polynomial, periodic) and the actual model parameters (function coefficients).

While automatically choosing the form of the basis functions may not be desirable for the

reasons discussed above, in the case where a regression model is mainly being employed to

fill in gaps in the raw data (rather to smooth over measurement noise), it is possible to auto-

mate the segmentation algorithm and the choice of model parameters based on the criteria

of query performance and accuracy. Chapter 5 of this thesis is devoted to this issue, and

proposes and evaluates an in-built segmentation algorithm, BSearch, that performs well

on our datasets and applications, and generalizes to any function of a single independent

variable that can be fit using linear regression (even if the basis functions are non-linear).

This algorithm allows the user to specify an error threshold to control the accuracy of the

resulting regression fit and trade it off against query execution performance.

In addition to fitting regression models in a single pass over raw data as in the above

view definition query, FunctionDB supports online model maintenance as new data is

inserted into the system. Currently, our system supports online maintenance for one-

dimensional time series data, for the case where all inserts are appends to the time series.

Again, this feature is discussed in more detail in Chapter 5.

2.1.3 Queries

We now turn to querying regression models. We assume that a regression view timemodel

for temperature as a function of time has already been constructed using CREATE VIEW as

described previously. Given these views, we show below what each of the queries posed

earlier look like in FunctionDB:

Query 1: Temperature at a given time (Simple Selection)

SELECT temp FROM timemodel WHERE ID = given-id AND time = 125

Query 2: Temperature above a threshold (Simple Selection)

SELECT time, temp FROM timemodel

18

WHERE ID = given-id AND temp < 18 GRID 0.5

Query 3: Time window average of temperature (Aggregation):

SELECT AVG(temp) FROM timemodel

WHERE ID = given-id AND time tl AND time t2

Query 4: Distribution of temperatures experienced by a particular location (Grouping, Ag-

gregation):

SELECT temp, AMOUNT(time) FROM timemodel

WHERE ID = given-id AND time tl AND time < t2

GROUP BY temp GROUPSIZE 1

All of the queries listed above use the regression fiu to predict the values of the dependent

variable used in the query. For example, Query 1 would return a temperature value for the

time instant 125 even if the sensor reading for this time instant were missing, by evaluating

the regression function at that time instant.

Also, some queries include a GRID clause. This is a simple SQL extension that specifies

the granularity with which results are displayed to the end user. Since FunctionDB repre-

sents regression functions symbolically and executes queries without actually materializing

the models at any point in a query plan (Chapter 4), the results of queries are continuous

intervals, unlike a traditional RDBMS where queries return discrete tuples. Hence, most

FunctionDB queries require a special output operator to display results to the user. GRID

is one such output operator. For a query that returns a continuous result, in order to be

compatible with a traditional discrete DBMS, GRID discretizes the independent variable at

fixed intervals to generate output tuples in the vein of a traditional DBMS. For example, the

GRID 0. 5 clause in Query 2 specifies that times where the temperature is below 18' should

be output as a sequence of tuples separated by a spacing of 0.5 along the time attribute.

The histogram query (Query 4) includes a GROUPSIZE clause which in this context

indicates the bin size of the histogram. In other words, temp is grouped into bins of size

1"C and the aggregate AMOUNT(time) is computed over these bins.

19

2.2 Spatial Queries on Car Trajectories

2.2.1 Application Scenario

Our second application aims to support queries on data from Cartel [8], a mobile sensor

platform developed at MIT that has been deployed on automobiles in and around the Boston

area. Each car is equipped with an embedded computer connected to several sensors as well

as a GPS device for determining vehicle location in real time. The Cartel node can also be

attached to sensors that collect different kinds of geographic data. The system has been

used for over a year to collect, visualize and analyze diverse kinds of data including vehicle

trajectories, WiFi connectivity, and road surface conditions.

In this thesis, we consider queries on car trajectory data specified by a sequence of GPS

readings. This data requires interpolation because GPS data are sometimes missing, when

the car passes under a bridge or through a tunnel, or whenever the GPS signal is weak.

Also, while GPS values are usually quite accurate, they can sometimes include outliers,

requiring filtration. This can happen due to multipath reflection i.e., multiple copies of the

GPS signal reflected from buildings or obstacles that interfere at the receiver.

The fact that trajectories correspond to cars driving on a structured road network, as

opposed to being arbitrary curves, makes this data an attractive target for modeling. Using

FunctionDB, we have constructed a piecewise regression model where the pieces are linear

functions that represent road segments. This approximates the trajectory quite well, and

smooths over gaps and errors in the data. Figure 2-2 illustrates real GPS data collected

from a car driving near Boston, and the corresponding regression model. Notice the large

gap in data near the Massachusetts Turnpike, and the linear function that helps interpolate

this gap.

2.2.2 FunctionDB View Definition and Queries

The FunctionDB schema for the regression view of a car trajectory is <tid, lon, lat>

where tid is a trajectory identifier, and lat (latitude) is modeled as a piecewise linear

function of the independent variable, lon (longitude) on each road segment. Below, we

20

8 a4Crtwc St James J SI(ftWWMAevn
05 as* St Stofr% D

S Boston 4i BackSI

ew P,

QlId5 020071

Figure 2-2: Trajectory of a car driving near Boston. The points represent raw GPS data,
and the line segments illustrate our regression fit to interpolate the data.

describe two queries that Cartel users are interested in, and show how they are written in

FunctionDB.

Bounding Box. How many (or what fraction) of the trajectories pass through a given geo-

graphic area (e.g., bounding box)? This query is easy to express as a selection query on the

view, say locmodel:

SELECT COUNT DISTINCT(tid) FROM locmodel

WHERE lat > 42.4 AND lat < 42.5 AND

AND lon < -71 AND lon > -71.1

Trajectory Similarity. One application of the Cartel data is finding routes between two

locations taking recent road and traffic conditions into account. To do this, we need to

cluster actual routes into similar groups, and compute statistics about commute time for

each cluster.

We express this query as a self-join that finds pairs of trajectories that start and end near

each other, computing a similarity metric for each pair. For illustration, we use a simple,

21

but reasonable similarity metric that pairs up points from the trajectories that correspond

to the same fraction of distance traveled along their respective routes. For example, the

midpoints of the two trajectories would be paired up, as would the points representing the

first quartile along each trajectory, and so on for all the points. The metric computes the

distance between the points averaged over all such pairs (note that there are an infinite

number of such pairs, so this query represents an aggregate over a continuous function).

Here, a somewhat simplified version of the FunctionDB query for trajectory similarity

is shown. This version of the query computes all-pairs trajectory similarities assuming the

availability of a view fracview with a precomputed distance fraction, frac. Note that

frac always lies in the interval. [0, 1], and has value 0.5 at the midpoint of a trajectory.

SELECT tablel.tid, table2.tid,

AVG(sqrt((table2.lon - tablel.lon)2 +

(table2.lat - tablel.lat)2))

FROM fracview AS tablel, fracview AS table2,

WHERE tablel.frac = table2.frac AND

tablel.tid < table2.tid

GROUP BY tablel.tid, table2.tid

As in the sensor application, querying the regression model, as opposed to the raw

data, results in significant benefits. For example, even if the bounding box in Query 1

happened to fall entirely in a gap as shown in Figure 2-3, the trajectory would count as

passing through the box as long as one of the underlying line segment(s) in the regression

fit intersected it.

As the above examples illustrate, FunctionDB provides a logical abstraction to the user

that is similar to a traditional relation iii a DBMS. This has the advantage that SQL queries

already written for raw data run in FunctionDB with little or no modification. However, be-

cause the underlying implementation represents and queries regression functions, the same

queries can now tolerate missing or incorrect data. Also, as we show in this thesis, because

22

Figure 2-3: Bounding box query on trajectory data benefits from regression.

FunctionDB represents and queries models algebraically, as opposed to materializing the

models into gridded data, the same queries also execute faster and more accurately than in

a system that maintains an interpolated (gridded) representation of the regression model.

Also, while the idea of query processing on functions is particularly useful for support-

ing regression models, the idea itself is quite general. For example, an underlying model of

trajectories based on actual road segment data (e.g., from geographic data) could be used

in FunctionDB and would work equally well, or better, than a model based purely on re-

gression. The algorithms we present for query processing in FunctionDB can be used to

represent and query this data, even though not it does not come from a "regression model".

23

Chapter 3

Representation and Data Model

Functions are first-class objects in the FunctionDB data model. This chapter describes

the basic representation FunctionDB adopts for functions, and describes the semantics of

relational and aggregate operations supported over functions in the system. In this thesis,

we focus on functions of a single variable, but later discuss how algebraic query processing

might extend to functions of more than one variable (Section 3.4).

Also, while FunctionDB can execute a wide and useful class of relational queries on

functions of a single variable, we shall see that it is impossible to guarantee that symbolic

query evaluation can be used for arbitrary functions derived from query expressions. Ac-

cordingly, in the general case, queries in FunctionDB may require approximation. The

semantics of this approximation are defined and spelled out in this chapter.

3.1 Piecewise Functions

In the standard relational data model, data is stored in the form of discrete records, or

tuples, each with multiple attributes (fields) in tables (relations). The data model defines

several operators, termed relational operators, that operate on one or more of these tables,

including o- (select), 7r (project) and x (join). The relational model has become the data

model of choice for most modern DBMSs, mainly because it was the first data model that

enabled satisfactory physical data independence i.e., separation of the logical semantics of

queries from the physical mechanism used to implement them. A detailed overview of the

24

relational model is found in [9].

The basic idea behind the FunctionDB data model is to add a new type of queryable

relation to the standard relational data model, which we term thefunction table. A function

table represents regression models that consist of a collection of pieces, where each piece is

a continuous function defined over an interval of values taken by the independent variable

of regression.

Each tuple in a function table describes a single piece of the regression model, and con-

sists of two sets of attributes: interval attributes that describe the interval over which the

piece is defined, and function attributes that describe the parameters of the regression func-

tion that represents the value of the dependent variable in that interval. These parameters

are in algebraic form; for example, in polynomial regression they are a list of polynomial

coefficients.

In this and the discussion that follows, we will focus on function tables that only contain

model variables, dependent or independent. However, in practice it is a must to support

relations that also include other variables not part of a regression model. For example, the

trajectory id tid in the trajectory example described in Section 2.2, Chapter 2. Note that

non-model variables stored as part of a function table are restricted, in the sense that they

must appear in the GROUP ON clause when fitting (Chapter 2): this ensures that each model

piece has exactly one value for these attributes. Other attributes in the raw data which are

not being interpolated, and do not appear in the GROUP ON clause when fitting the model

are stored with the original discrete table containing the raw data. For example, this would

happen if we had a speed attribute for each raw data point in the trajectory schema, but did

not want to fit a model to the values in this column.

Figure 3-1 shows an example of FunctionDB fitting a regression model to raw data

with two attributes: x and y. The data has been modeled with two regression functions that

express y (the dependent variable) as a function of x (the independent variable): y = x in

the case when I x < 6, and y = 2x - 6 when 6 x < 14. In the function table, attributes

"Start x" and "End x" are interval attributes while "Slope" and "Intercept" are function

attributes.

While a function table is physically a finite collection of functions, at the query lan-

25

Raw Data Regression Curve M

X Y SELECT*
1 1.1 Regression GRID 1

2 1.9
3 3.1 y=2x-6

4 4

5 4.8 y x
6 6.1
7 7.9
8 9.8

19 11.9 Function Table
1116.11

12 18

14 22.2

Start x End x Slope Int

1 6 1.0 0.0

6 14 2.0 -6.0

aterialized
Grid

X Y
1 1.0
2 2.0
3 3.0
4 4.0
5 5.0
6 6.0
7 8.0
8 10.0
9 12.0

10 14.0
11 16.0

12 18.0

13 20.0
14 22.0

Figure 3-1: Raw data, corresponding function table, and result of a SELECT * query.

guage level, a function table is a different kind of relation - one which describes an infinite

set, and logically consists of every single point on a continuous curve representing the func-

tion. This is in contrast to traditional relations that are finite collections of discrete tuples.

To illustrate this, Figure 3-1 also shows the result of a SELECT * query on the function

table. Since it is not possible to output an infinite set of tuples, the query includes a GRID

1 clause, which tells the system to materialize the function table by evaluating the function

at intervals of 1 along the independent variable, x, and display the resulting (gridded) set of

discrete points. As we shall see, FunctionDB can compute the answers to many relational

queries symbolically, and hence many query plans only perform gridding at the very end

for displaying the result to the user.

Interval attributes represent an interval on the real line in the case of a single inde-

pendent variable. Our data model permits relations that contain overlapping intervals or

regions of independent variable(s). This enables us to support models in which there can

be multiple values of the dependent variable corresponding to a single value or set of val-

ues taken by the independent variable(s). While regression functions on time series data are

single-valued, this relaxation is useful to represent other models that are not single-valued,

26

like car trajectories.

In our implementation, we group function attributes into a function ADT that imple-

ments algebraic primitives like equation solving, inversion and definite integrals. Opera-

tors in our algebraic query processor are implemented entirely in terms of these primitives

(Table 4.1 in Chapter 4). This has the advantage that our operator implementations are

extensible to a wide variety of functions, as well as to user-defined regression models.

3.2 Relational Algebra and Query Semantics

Since function models are just relations, traditional relational operators such as selections,

projections, joins, as well as aggregate operators (like averages and counts) extend natu-

rally to function tables. These operators retain semantics that are similar to their discrete

versions, but with some differences, because our operators logically operate over infinite

relations, as opposed to traditional operators on finite relations. For example, aggregate op-

erators need to be generalized from discrete sums/counts to definite integrals in the contin-

uous domain. In this section, we first discuss the semantics of query results in FunctionDB,

and then go on to define the semantics of individual operators on infinite relations.

3.2.1 Semantics of Query Results

There do exist relational queries which cannot be solved entirely in the functional domain in

our framework. For instance, computing an aggregate of an arbitrary expression involving

the columns of a function table (e.g., the mean square difference of two functions) may

not be possible to do symbolically if FunctionDB does not know to integrate the derived

function analytically; in this case, the system must fall back to approximating the query

result using numeric integration.

For this reason, FunctionDB adopts a graded semantics for query results. At one ex-

treme is a pure gridding approach (like that adopted in the MauveDB work). In this ap-

proach, the first step in a query plan always consists of applying a GRID operator to dis-

cretize the function tables being operated on by the query. The semantics of the GRID

operator are as follows: GRID takes a function table as input and selects a finite set of tu-

27

ples, sampled at a discrete interval from the corresponding infinite relation by evaluating

the function at fixed intervals of each independent variable. For example, the result of ap-

plying GRID with size 1 to a table with two pieces, y = 2x for 0 x < 2 and y = x + 2

for 2 < x < 4, is a finite collection of tuples: { (0, 0), (1, 2), (2,4), (3,5), (4,6) }. The grid

spacing for discretization can be controlled by the user with the GRID clause, an exten-

sion to SQL supported by FunctionDB. A narrower spacing implies more accurate query

execution, and conversely a wider spacing means less accuracy.

A pure gridding approach has the advantage that it is always guaranteed to be usable,

and can yield reasonable answers to queries. In practice, however, most queries lend them-

selves at least partially to symbolic evaluation. The process of converting a pure gridding

query plan to use algebraic processing can be logically thought of as a "lift-up" process,

where the strategy is to lift the GRID operators progressively up the query plan until the

system encounters an operator that cannot be converted to use functional processing. In

the best case, the query can be executed completely in the functional domain, and the only

GRID operator that remains is at the top of the query plan, for displaying results. The lift-up

process is always guaranteed to improve the accuracy of query execution.

As we show in Chapter 4, some important classes of relational queries can be executed

entirely in the functional domain on functions of a single variable:

9 Filters on individual attributes of the relation (e.g., of the form y > 3 or x > 2).

9 Filters on algebraic expressions (e.g., x +y > 2) where the type of the expression can

be inferred at query compile time, and is known to the FunctionDB system. For the

special case of polynomial functions, for example, FunctionDB can handle arbitrary

expressions involving the +, - or x operators entirely in the functional domain.

* Equijoins between function tables, on either the independent or dependent attribute(s)

of either table (e.g., of the form Rl.x = R2.y), provided the join condition can be

rewritten as a condition on a function of a single variable (of the form F(x) = 0)

whose type is known to FunctionDB.

e Aggregate queries on algebraic expressions whose type is known, and for which

28

an indefinite integral is known to FunctionDB (some functions, like y cannot beX

integrated analytically in closed form).

Also, parts of more complex queries which cannot be executed without approximation

can still take advantage of algebraic query execution if they fall into one of the above cate-

gories, each of which is a commonly occurring building block in many relational queries.

3.2.2 Semantics of Individual Operators

3.2.3 Selection

The selection operator, o-p, when applied to the infinite relation F represented by a func-

tion table yields another relation F', that can also be represented by a function table. F'

is defined to be the (largest) subset of F satisfying the selection predicate P. Selection

predicates can involve both dependent and independent variables of regression.

As an example of selection, applying Cog 5 to a table with two pieces: y = 2x for

0 x 2 and y = x + 2 for 2 < x 4 results in a function table with a single piece:

y x + 2 for 3 x 4. The first piece, y = 2x for 0 x 2, was discarded because

no y value predicted by the model in this region can exceed 5. Similarly, only a part of the

second piece was retained by the c- operator.

The result, F' of selection can be either a finite or infinite set depending on the predicate.

For example, an equality (=) predicate on the dependent variable of a linear function will

always produce a finite result (except in the special case of a constant function) while an

inequality predicate, like > in the example above, will produce either no result, or a result

that represents an infinite set.

In cases where the function table has overlapping intervals over which functions are

defined (this happens with multi-valued relations, like car trajectories) the result of 0-p is

the union of the results obtained by applying c-p individually to each interval in F.

29

3.2.4 Projection

The projection operator, 7Tv when applied to an infinite relation F yields an infinite rela-

tion F' consisting of all the possible values the projection attributes V take in the original

relation F. If the variables being projected are all independent or dependent variables, the

result is simply a set of intervals. As in the case of selections, applying r to a function

table with overlapping intervals yields the union of results from applying r to individual

intervals in the function table.

3.2.5 Join

The join operator, mp is applied to two relations R1 and R2 , where R1 and R 2 can be function

tables or normal relations. Joins have identical logical semantics to traditional relational

algebra: a tuple (ti, t2) is present in the joined result if and only if t, E R 1, t 2 E R2 and

(tI, t 2) satisfies the join predicate P. For example, consider a table F containing the piece

v = 2x - 6, defined over x E [4,6], a table F2 containing y = x defined over [3,7], and

the equijoin operator NFI.y=F.y applied to the two tables. The result of the join is finitely

representable as a function table containing two dependent variables, one for each of the

x attributes from the two tables, and a single independent variable which is the equijoin

attribute y. The table contains a single piece given by x, = + 3, x2 = y, defined over

Y E [3,6].

Note that it is possible to join a function table to a traditional relational table. In the

special case of equijoins, the result will typically be a finite set of tuples.

Also, the results of some joins (e.g., cross products of completely unrelated functions,

with no join predicate) are not function tables, necessitating the use of gridding as a fall

back option to execute the query.

3.2.6 Aggregate Operators

In addition to relational operators, our algebra includes a suite of aggregate operators that

are the continuous analogues of traditional database aggregates like SUM, AVG and COUNT.

30

SQL Aggregate FunctionDB Analogue
COUNT(R.A) = -eVEA I AMOUNT(R.A) - A dv

SUM(R.A) = EVERAV AREA(R.A) = eR A v d(R.X)

AVG(R.A) = 'RA I AVG(R.A) = -ER.Av(X
___ _ _ .X__f_ f d(R.X)

Table 3.1: Discrete aggregates and their FunctionDB counterparts.

Traditional aggregates over discrete relations generalize to definite integrals when op-

erating over continuous functions. For example, consider the SQL COUNT operator applied

to an attribute R.A of a relation R. This operator counts the number of tuples that occur in

column A of R, which essentially computes the sum in ElRA 1 (ignoring duplicates). In the

continuous domain, this sum generalizes to a definite integral: 1.R.1 dv. If R.A represents

time, then this integral computes the total time spanned by the model R, which is the sum

of lengths of all the time intervals that pieces of R are defined over. We name this aggregate

operator AMOUNT.

Other aggregate operators generalize similarly. Table 3.1 shows three common SQL

aggregate operators, the discrete sum they compute and the definite integral that this sum

generalizes to in the continuous domain. In the table, R.X denotes the independent vari-

able(s) that the integral is computed over. The aggregation attribute R.A can be either a

dependent or independent variable.

3.3 Discussion

Our choice of piecewise continuous functions as the underlying representation for models

has several benefits:

Algebraic Query Execution. Restricting models to functions enables query execution

using algebra (Chapter 4), which helps answer queries faster and more accurately.

Losslessness. It is a completely lossless representation of the underlying continuous func-

tion. Because the FunctionDB query processor usually avoids materialization until late

in a query plan, there are no errors introduced in addition to the inherent error of fit-

ting the model. In contrast, executing queries on a gridded representation, as done in

MauveDB [7], introduces and propagates additional discretization errors throughout the

31

query plan. (Chapter 4.4).

Reduced Footprint. It is compact compared to maintaining a gridded representation of the

model, because a function table has only as many rows as there are pieces in the regression

model, usually an order of magnitude smaller than a materialized representation. Lower

footprint results in substantial savings in I/O and CPU cost, and order of magnitude better

performance on queries (Chapter 4.4).

Wide Applicability. It is simple to reason about and implement, and at the same time

generalizes naturally to support a wide class of regression models used in practice.

Function tables are only one possible way to represent an infinite relation using a finite

set of tuples. For example, our data model is more restrictive than constraint databases [20,

21], which represent infinite regions like polygons or line segments as algebraic constraints.

Constraint databases are more general than function tables because any function table can

be described by a set of inequality constraints for interval attribute(s), like 740 t 1001,

and an equality constraint for functions like temp = 2t + 3. These databases are capable of

solving arbitrary linear programs, and the results of arbitrary relational operators in higher

dimensions are always well defined, but this generality comes at a price. General constraint

solvers are complex to build, with the result that in practice, constraint databases have been

confined to linear constraints. Our query processor is simpler and more extensible to a

variety of functions.

3.4 Future Work: Higher Dimensions

A simple function-only representation does not directly generalize to functions in higher

dimensions - in other words, functions of more than a single variable. While functions

of multiple variables can be represented in our system and stored in function tables, the

results of relational operators on functions of more than one variable are not always func-

tion tables, even for simple operators like filters and projections. For example, the selection

predicate 0 -z4 when applied to the function z = x 2 +y2 yields the circular region x2 +y 2 <4,

which is not representable as a function table.

We hypothesize that combining our representation and framework for functions (Sec-

32

tion 4.1) with the expressive generality of the constraint data model (see above) might help

tackle this problem. Interval attributes would generalize to describing a region, and con-

straints would be expressed as conditions on functions (e.g., f(x,y) < 4, where f(x,y) =

x2 + y2, in the above example). The system would still require approximation to actually

evaluate queries involving complex regions defined by constraint boundaries: however,

since any higher dimensional region can be approximated with a set of hypercubes, this

approach still has the promise of being more efficient than simple gridding. We leave the

implementation of higher dimensional functions in FunctionDB to future work.

33

Chapter 4

Query Processor

The core of FunctionDB is an algebraic query processor that executes relational queries

using operations in the functional domain. This chapter describes the key idea behind our

query processor: an extensible framework for expressing relational operators as combi-

nations of primitive operations on functions, and spells out the algorithms for relational

operations in FunctionDB in detail. This is followed by a detailed experimental evalua-

tion of our query processing algorithms, and comparison to the existing gridding-based

approach. The evaluation uses real data and queries from the applications introduced and

described in Chapter 2.

Note that this chapter focuses on algorithms for query processing on regression func-

tions that have already been fit to data; the next chapter describes and evaluates algorithm(s)

for online model maintenance as new raw data is inserted into FunctionDB.

4.1 Extensible Function Framework

The obvious way to implement a function-aware query processor would be to define ab-

stract data types (ADTs) for different classes of functions (e.g., linear, periodic or poly-

nomial) and implement relational operators that work on each function type. While this

approach would be adequate if FunctionDB only needed to support a limited class of func-

tions, it requires replicating implementations of operators for each new class of function

added to the system.

34

Hence, we have instead chosen to characterize a small set of abstract "interfaces" im-

plemented by all continuous functions of a single variable, and express relational and ag-

gregate operators in terms of these interfaces. Since our operators work by invoking these

interfaces and do not directly rely on the type of function, it is sufficient to implement these

algebraic primitives for each new model type that needs to be supported.

As discussed in Chapter 3, at one extreme, it is possible to implement arbitrary rela-

tional queries on functions using a pure gridding approach. The only property required for

this approach to work is function evaluation, i.e., the ability to compute the value taken

by the function, f(x) for a particular value x of the independent variable. However, this

approach is quite slow and results in loss of accuracy due to discretization (Section 4.4).

Suppose we now require functions to implement a simple new primitive: rootfinding.

Given a real number a as input, a "root finding" interface determines all values of the

independent variable x for which f(x) = a. This primitive is sufficient to solve selection

queries with predicates of the form' WHERE y = a, which involve the dependent variable of

regression, y.

Selection based on root finding is simple. For each piece in the function table, the

algorithm invokes root finding to determine candidate values of x such that f(x) = a, and

then checks which of these values fall within the interval of x over which the piece is

defined. For each such value, say xO, it outputs a tuple with the same function coefficients

as the original tuple, but defined over a single point: [xO, xO]. If none of the candidate

x values lie within the interval of definition, this means that no points in the input piece

satisfy the selection predicate, so no output tuples are emitted.

Selection by root finding is the simplest example of algebraic query processing. If more

properties are available for a class of function, taking advantage of them progressively

enables new classes of operators to be executed algebraically without having to fall back

on gridding. To illustrate, Table 4.1 lists some common classes of relational operators,

and algebraic primitives that would enable executing that operator without materialization.

The table is not exhaustive, but meant to give a flavour of the algebraic techniques used by

'Because pieces are continuous functions, it actually turns out that root finding is sufficient to solve
arbitrary > / < predicates (Algorithm 1).

3-5

Relational Operator Application Example Required Primitives Advantages Over Gridding

Selection on dependent variable Find when temperature crosses Root Finding, Evaluation Faster if low selectivity

('TF.y>a/F.y<a/F.y=a) threshold

Selection on independent variable Restrict query to time window None (Interval Manipulation) Faster if low selectivity

((TF.x>a/F.x<a/F.x=a)

Equijoin of independent vari- Compare temperatures at two sen- Function Subtraction, Root Find- More Accurate for = test, Faster

ables, compare dependent sors at same time ing for > / < test if low selectivity

(MFi .x=F 2 .xvF1 .y>/<F2.y)

Equijoin of dependent variables Line up vehicle trajectories on Function inversion More accurate for = test, Much

(xFj.y=F2.y) distance fraction (Section 2.2, faster
Query 2)

Group by independent variable, Compute temperature average Definite integral (Area under More accurate, faster

aggregate dependent over time windows curve)

Group by dependent variable, ag- Duration histogram for tempera- Function inversion, definite inte- More accurate, faster

gregate independent ture ranges (Section 2.1, Query 5) gral for inverse

Selection on non-model variable Restrict query to particular sen- None (traditional relational oper- None

sor(s) or trajectory(s) ator)

Aggregate non-model variable Count trajectories within bound- None (traditional relational oper- None
ing box ator)

Table 4.1: Commonly used relational operators and algebraic primitives that can be used to execute them. F, F 1, F2 denote function

tables, x, x1 , x2 denote independent variables, y denotes a dependent variable, and a, aI and a2 denote constants (query parameters).

FunctionDB. The next section presents more detailed algorithms for each of the relational

operators.

4.2 Expressions and Type Inference

In general, a relational query can involve arithmetic or algebraic expressions applied to the

independent or dependent variables in a function table. For example, the selection query

"SELECT x, y FROM F WHERE x + y > 3 involves a selection predicate applied to the

algebraic expression x + y. In order to take advantage of algebraic processing to execute

this query without gridding, FunctionDB needs to be able to determine the type of function

represented by the algebraic expression x + y.

Our prototype implementation of FunctionDB uses the property-based framework de-

fined in the previous section for rudimentary type inference: our system can be augmented

extended with rules for different arithmetic and algebraic operators specifying their result

types in terms of the types of their arguments. For example, it would be possible to add a

rule that applying +, - or * with two polynomial functions as arguments always yields a

polynomial function. These rules can be used for type inference at compile time.

FunctionDB does have to fall back on using GRID if it cannot infer a type at compile

time, or if a property (e.g., analytical integration) is not available for a derived/inferred

function type. The more general problem of a consistent and comprehensive type system

for algebraic expressions is beyond the scope of this thesis. However, computer algebra

systems like Maple and Mathematica are capable of fairly sophisticated computations on a

wide variety of functions: it should be possible to use a more sophisticated CAS framework

in FunctionDB for type inference instead.

4.3 Operators

This section presents algebraic algorithms for the standard relational operators: selection,

projection, join, grouping as well as declarative aggregate operators, as applied to continu-

ous functions of a single variable.

37

Our operators all export and use an iterator interface typically used in implementations

of relational DBMS systems. A query plan consists of a directed acyclic graph of opera-

tors, with the leaves being iterators over relational tables or function tables. Each operator

exposes an interface that returns the next output tuple if available, or a null value if no

more result tuples exist. As a simple example, a selection (filter) operator would return

the next tuple from its child operator which satisfies the filter predicate on being queried

by its parent operator in the query plan, or a null value if no more tuples exist satisfying

the predicate. The top-level operator exposes the same iterator interface: a user program

connecting to the DBMS would pull tuples from this interface to iterate over a query result.

For each operator, we also indicate the conditions under which algebraic processing is

possible for that operator. These preconditions are checked at query compile time, rather

than at execution time. If any precondition(s) for executing an algebraic version of an

operator fail, the system falls back on gridding. This simply involves inserting a GRID

operator before the operator's inputs, and substituting the operator with a traditional DBMS

operator for the same task.

4.3.1 Selection

Selection queries can involve either the dependent or independent variable of a model,

or both. Selection over the independent variable (x > / < / = a) is easy, and does

not depend on the function at all. It merely requires checking each piece in the function

table to determine what portion of the corresponding interval (if any) satisfies the selection

predicate. For example, applying the predicate x > 3 to the function piece y = 2x defined

over [2,4] would yield as output a piece with the same function, y = 2x, but now defined

over [3,4].

The previous section described selection for predicates of the form y = a using root

finding. Algorithm 1 handles predicates of the form y > a. The algorithm for y < a follows

by symmetry. This algorithm also uses root finding, and additionally exploits the fact that

a continuous function f(x) has alternating signs in the intervals of x between the roots of

the equation f(x) = 0, provided "corner case" (degenerate) roots where the function is

38

Algorithm 1: (Selection on y) 0o,(F)

Note: Algebraic primitives are typeset in bold italics.

Given: An upstream iterator, F, to apply selection to, and a selection predicate,
y > a.

Precondition: F.y supports the findroots primitive.

1 if cache not empty then return tuple from cache
2 while F has more tuples do
3 Next +- F.GetNexto
4 {Start, End} <- Next.interval
5 Piece <- Next.function
6 AllRoots <- Piecefindroots(a)
7 Candidates <- {x: x E AllRoots and Start x End}
8 SR <- Smallest root E Candidates larger than Start
9 if Piece.evaluate(Start) > a then

10 i +- Alternating intervals from Candidates including [Start, SR]
11 else
12 I <- Alternating intervals from Candidates excluding [Start, SR]
13 for i c I do
14 Output.function <- Next.function
15 Output.interval <- i
16 return Output if first tuple, else cache it

tangential to the line y = a are counted twice. Also note that for general functions, a single

piece could contain multiple disjoint intervals of x where the selection predicate is true

(though there is at most one for linear functions).

The algebraic algorithm for selection presented above outperforms the gridding ap-

proach, because its running time depends only on the number of pieces in the regression

model, which is usually an order of magnitude smaller than a materialized grid of points.

Also, as our evaluation in Section 4.4 shows, even if the selection result ultimately needs

to be materialized to display results to the user, the algebraic approach still has significant

performance gains when the filter predicate is selective.

4.3.2 Join

This section describes algorithms for different classes of joins, classified on the basis of the

type of join predicate:

39

" Equijoins on the independent variable between two function tables, corresponding to

predicates of the form F1 .x1 = F2 .X 2.

" Equijoins on the dependent variable between two function tables, corresponding to

F1.y1 = F 2.y2.

" Joins on predicates with algebraic/arithmetic expressions that can depend on inde-

pendent or dependent variables from either function table.

" Joins with multiple predicates from one of the above categories.

" Joins whose results are regions that cannot be expressed as function tables (e.g., cross

products).

" Joins between function tables and standard discrete relational tables.

While we focus on the first four categories of joins (they appear commonly in applica-

tions of interest, and in the examples discussed in this thesis), we later overview how joins

in the last two categories are implemented.

Equijoin on x

As with selections, equijoins between two function tables involving only the independent

variable are easy to compute and do not use the function attributes at all. Any of the

traditional join algorithms used in a relational DBMS can be used here, with a minor mod-

ification to test for overlap of x intervals rather than to compare attributes. For example,

a simple nested loops join would loop over all pairs of pieces in both relations and deter-

mine which pairs overlap. For each pair of pieces whose x intervals overlap, the algorithm

outputs a result tuple whose interval is the intersection of the overlapping x intervals, and

which contains the function attributes from both pieces, copied over without any modifica-

tions.

Equijoin on y

Equijoins between two function tables on the dependent variable are a little trickier. The

key insight is that an equijoin on y can be transformed to an equijoin on x using function

40

inversion. As a simple example, consider the problem of joining two isolated pieces: y =

2x + 2 defined over x e [0, 2], and Y = x defined over x E [3, 7]. Inverting the linear

functions enables us to rewrite x as a function of Y instead. The transformed equivalents

of these pieces are x = iy - 1 defined over y e [0.6], and x = y defined over V E [3,7].

We now use the procedure for equijoins on the independent variable, yielding a composite

piece with two functions: x = jy - I and x = y, both defined over the overlapping range

y E [3,6]. It is easy to verify that this correctly represents the result of the y equijoin.

While the above procedure works for functions that have a unique inverse (like linear

functions) it may not be immediately obvious how to extend the algorithm to functions that

may not have a mathematical inverse i.e., functions like y = x2 for which there are multiple

values of x that yield the same value of y. Here, our piecewise data model allows us to

provide well defined answers to such queries. For such functions, we require the inversion

primitive to return a list of inverse pieces defined over appropriate intervals, rather than

a single piece. For example, invoking inversion on the quadratic function y = x2 defined

over x e [-2,2] would return tvo pieces: x = + -f and x = - 5, both defined over the

interval y E [0, 4]. For periodic functions defined over a specific interval (e.g., trigonometric

functions), the inverse primitive might need to return multiple pieces depending on the

length of the interval. Algorithm 2 formally describes this procedure.

Joins On Algebraic Expressions

Join predicates can involve complex algebraic expressions that depend on both the indepen-

dent and dependent variables of a model. For example, one of the join predicates in Query

3 (Chapter 2, Section 2.1): ABS(T1.temp - T2. temp) > 5, involves a subtraction fol-

lowed by applying an absolute value operation. In this case, the query is decomposed into

two stages: a preliminary map operator that computes the function representing T1. temp

- T2. temp (this being possible thanks to the equijoin predicate on time), and a selection

operator applied to the resulting expression.

As mentioned in Section 4.2, evaluating arbitrary complex algebraic expressions over

functions is a hard problem. For one, an algebraic expression can result in a derived func-

tion type that may not be known to the system, or may not support required primitives for

41

Algorithm 2: (NL-Join on y) xF.y,=F2.y2 (FI, F2)
Given: Upstream iterators F and F2 , and join predicate F1 .y1 = F 2.v2.
Precondition: F1 .yi and F 2.Y 2 support the invert primitive.

i if cache not empty then return tuple from cache
2 while F1 has more tuples do
3 NextOuter <- FI.GetNexto
4 Outerlnv <- NextOuter.function.invert()
5 OuterInt <- OuterInv.interval
6 F2.Rewindo ; // Reset inner iterator
7 while F2 has more tuples do
8 NextInner <- F 2.GetNext()
9 IList <- InnerPiece.function.invert()

10 for InnerInv E IList do
11 InnerInt +- Inner]nv.interval
12 if OuterInt and InnerInt overlap then
13 Output.interval <- OuterInt n Innertnt
14 Output.function I +- OuterInv.function
is Output.function2 <- InnerInv.function
16 return Output if first tuple, else cache it

query processing. We do not claim that FunctionDB provides a complete end-to-end so-

lution to this problem. Rather, our aim is to provide an extensible framework to add more

types and properties to the system so that queries can benefit incrementally as more types

are supported.

Joins Requiring Approximation

As discussed previously, some joins of completely unrelated function tables translate into

higher dimensional regions, not expressible in our simple function data model. For exam-

ple, cross products of unrelated function tables with no restricting predicate fall into this

category, as do joins with only > and < predicates imposing constraints on the combined

tuple. These joins also require gridding.

Complex Predicates

Many joins involve a predicate which is a logical (Boolean) expression formed from sim-

pler predicates that fall into one of the above categories. For example, consider the join in

42

Query 3 mentioned earlier in the context of the temperature sensor application (Chapter 2,

Section 2.1):

Query 3: Nearby locations reporting differing temperatures (Join)

SELECT T1.time, T1.ID, T1.temp, T2.ID, T2.temp

FROM timemodel AS T1, timemodel AS T2

WHERE T1.time = T2.time AND

ABS(T1.temp - T2.temp) >5 AND

(T1.x - T2.x)2 + (T1.y - T2.y)2 <22

The above query is a self-join between parts of the same function table corresponding to

temperature readings from two different sensors. The join predicate here is the logical

conjunction of three predicates: an equality predicate on the independent variable of re-

gression (T1. time = T2. time), and two other predicates involving algebraic expressions

over the independent and dependent variables. The problem of constructing appropriate

query plans for such joins (e.g., deciding which predicates to execute first) is similar to

query optimization in existing RDBMSs, and we leave this as an interesting area for future

work.

Joins With Normal Tables

Joins between traditional relations (containing discrete tuples) and function tables are es-

sential to pose "mix and match" queries between the raw data (preserved in a discrete table)

and a regression model that has been fit to the data. For example, a query to evaluate the fit

error of a model in a specific window of time or range of the fit could be expressed as such

a join query.

For functions of a single independent variable, joins with normal tables can be executed

without approximation. For example, an equijoin query on a particular attribute (say x) can

be executed by simply evaluating each of the pieces in the function table at each of the

values of x in the normal table, and testing the join predicate for each candidate pair of

records in the two tables. Similarly, other kinds of join predicates can be evaluated by

substitution: values from the normal table are substituted into the join predicate to create

43

a succession of selection predicates on the function table, whose results are concatenated

together to yield the query result. For example, consider the join predicate F1.yi = T2 -y2.

If the values of Y2 occurring in T2 are v1 , v2 , v3, ... then for each such value, this would

translate into evaluating selection predicates of the form F1.y1 = vi, F1 .Yi = V2, . - -

4.3.3 Indexing

While the discussion has so far focused on the simplest algorithms for relational queries

(e.g., NL joins), as in a traditional DBMS, FunctionDB can also use indexes to speed up

queries.

Selections and joins on x need to look up intervals of x overlapping with a given point

or interval, and therefore benefit from an interval tree index that stores intervals of x. For

selection or join predicates involving the dependent variable y, FunctionDB can automati-

cally build a similar index for continuous functions that can be differentiated symbolically.

The idea is to determine the extreme values of a function f(x) in its interval of definition

by locating the points where its derivative, fI(x) vanishes. The maximum and minimum

values taken by y in each function piece are stored as intervals in a tree. Because a continu-

ous function f(x) defined over an interval I is guaranteed to take all the values between its

extreme values in I, the interval tree index can be used for a range or equality query. The

desired range/point is looked up in the index to find intervals overlapping it, and within

each of those intervals, it is easy to use the findroots primitive on f(x) to determine the

result tuples for the join or selection.

As in traditional RDBMSs, if a selection/join query is selective and not many pairs

overlap, it should be faster to look up overlapping intervals in the index.

4.3.4 Aggregate Operators

FunctionDB includes implementations for the three aggregates mentioned in Section 3:

namely, AMOUNT (analogous to SQL COUNT), AREA (analogous to SQL SUM) and AVG. Just

as with select-project-join queries, these aggregate functions can be used to compute aggre-

gates of fields that are independent variables, dependent variables or algebraic expressions.

44

We name them slightly differently from traditional SQL aggregates because they operate in

the continuous domain.

In the continuous domain, aggregates over any kind of variable (independent or depen-

dent) can be evaluated as a definite integral, which is equivalent to the limit of a sum.

For example, consider the aggregate AMOUNT (x) applied to tuples from a function table

F with schema <x, y=f(x)>. For each tuple fed to it with x interval [XI, x 2], AMOUNT(x)

computes the length of the interval x2 - x1 , and accumulates the sum of these lengths 2 over

all the input tuples in F. Mathematically, AMOUNT(x) can be viewed as computing the

sum [xkx2]EF (f 2 1 dx) (though this expression ultimately simplifies to the length of the

interval, as shown above).

While aggregates over the independent variable have simple expressions and do not ac-

tually require computing symbolic integrals, this ability is required for computing averages

or sums of dependent variables. For example, the aggregate AREA(y) when applied to a

regression model with schema <x, y> computes the total area under the regression curve,

which is equal to the sum of these areas under all the pieces in the function table. For an

individual piece y = f(x) defined over the interval [xI, x2], the area under the piece is given

by the definite integral 47 f(x) dx. Accordingly, our aggregate implementation works by

invoking a "definite integral" primitive on each piece in the function table. This primi-

tive takes the endpoints of the interval as a parameter, and returns the value of the integral

(which itself is computed symbolically). AREA(y) accumulates the returned values over all

the pieces in the table, in effect evaluating the sum xx f dx).

The other aggregates: AREA(x), AVG(x), AMOUNT(y), and AVG(y) have similar ex-

pressions, derived from Table 3.1 in Section 3.

Numerical Integration. It is not always possible to use symbolic integration to execute ag-

gregate queries: some functions cannot be integrated symbolically (like 2"I). The fallbackX

option for executing aggregate operators, as with selections and joins, is to use gridding.

The discretization (GRID) operator is first used to materialize the function(s) into discrete

tuples, and the aggregate sum (or count) is computed as a discrete sum or count. Using
21t is possible to either include or exclude the signs of the individual integrals when computing this sum.

We have implemented both versions of aggregate operators.

45

gridding for aggregation is in effect equivalent to using numerical integration to compute

the value of an integral.

4.3.5 Grouping Operators

As with other operators, aggregate queries that first GROUP BY a model attribute can be

classified on the basis of the grouping field type: independent or dependent.

Grouping on the independent variable into groups of a given size, S, is accomplished

with simple interval manipulation. The algorithm first splits each of the input tuples

into tuples defined over smaller intervals that entirely lie within an interval of the form

[kS, (k + I)S] for some integer k ;> 0. For example, if using bins of size 0.1, the in-

tervals [0.22,0.38] and [0.38,0.56] would be split into [0.22,0.3], [0.3,0.38], [0.38,0.4],

[0.4,0.5], [0.5,0.56]. Once the tuples have been split, it is easy to hash each of the smaller

tuples into an appropriate bucket based on the start points of their intervals (e.g., [0.3, 0.38]

and [0.38,0.4] would fall in the same bucket). The required aggregate over the dependent

variable can now be computed by summing the values of definite integrals over all the

pieces within each hash bucket, as explained earlier.

Grouping the dependent variable (e.g., Query 5 in Section 2.1) uses the same inverse

transformation as discussed for joins. The algorithm first invokes the inversion primitive on

each tuple to express x in terms of y, and then follows a split-and-hash procedure identical

to that described above to group on the (now independent) variable y.

4.4 Evaluation

In this section, we present an experimental evaluation of the FunctionDB query processor

on queries from the applications described in Chapter 2. We first show a simple moving

average query on which using FunctionDB to fit a regression model helps deal with gaps

in raw data. We then quantify two main advantages of our algebraic query processor over

the gridding approach used by systems like MauveDB, where models are represented as

discrete points by evaluating the regression model at a fixed gridding interval.

46

First, gridding introduces discretization error, because a grid is a coarse approximation

to a continuous model. We show that this error can be significant for simple aggregate

queries on our data. In contrast, FunctionDB queries avoid gridding models until the output

stage of a query plan, and hence do not introduce any additional discretization error.

Second, while it is sometimes possible to reduce discretization error by using a small

gridding interval, this requires storing and/or processing a large number of discrete points.

FunctionDB's algebraic approach is a performance win, because it only has to process as

many tuples as there are pieces in the regression model. Although algebraic manipula-

tions on tuples are slightly more complex than relational operations on individual raw data

points, our results demonstrate that in practice, this tradeoff largely favours algebraic query

processing. The lower footprint of our approach results in reduced CPU cost for per-tuple

processing overhead, memory allocation and deallocation, and substantially lower I/O cost.

Finally, we also present a cross validation experiment from the Cartel application (Sec-

tion 2.2) that demonstrates the benefits of using FunctionDB to smooth over gaps in raw

GPS data.

4.4.1 Experimental Methodology

For evaluation, we built an in-memory database prototype of FunctionDB in C++. We con-

structed FunctionDB query plans by hand, by connecting together FunctionDB operators.

For each experiment, we also implemented a gridding version of the query which operates

on a model representation gridded at regular intervals of the independent variable, and uses

traditional query processing operators. In all our experiments (algebraic and gridding), the

query processor reads data stored on disk into an in-memory table, executes the query plan

on the in-memory table, and writes the query results to a file on disk. We have chosen to

build an in-memory prototype of our query processor for simplicity, because our data sets

fit in main memory. Our experiments quantify I/O cost (reading data from disk) separately

from CPU cost (query processing). The CPU cost measures query execution time when

all the data is already in the DBMS buffer pool, while the I/O cost provides insight into

how performance might scale to larger on-disk datasets. All our experiments were run on a

47

3.2 GHz Pentium 4 single processor machine with 1 GB RAM and 512KB L2 cache. Our

results are all averaged over 10 experimental runs.

4.4.2 Part A: Temperature Sensor Application

We evaluated FunctionDB on the temperature data described in Section 2.1. To recap, this

data contains temperature observations collected from 54 sensors, with the schema <time,

temp>. We first fitted a piecewise linear regression model to temperature using a peak

finding procedure, as described in Section 2.1. For testing, we inserted all the regression

models into a single function table, tempmodel, containing 5360 function pieces. This cor-

responds to 10 days of temperature data, with a total of ~ 1,000,000 temperature readings.

Each piece describes temp as a linear function of time, and on average fits approximately

200 raw temperature readings.

Comparison to Raw Data

We present a simple comparison of FunctionDB to query processing over raw temperature

data. Figure 4-1 shows the results of a simple query that computes moving averages of

temperature over 10 second windows (Query 4, Section 2.1). The figure shows that com-

puting the average over raw data is inaccurate and yields spurious results whenever there is

a gap in the data. Running the query over regression functions yields a smoother moving

average without outliers.

Comparison to Gridding

To compare to a gridded representation of the model, we evaluated FunctionDB on the

histogram query from Chapter 2, Section 2.1 (Query 5). The query computes a histogram

of temperatures over the time period of the dataset, using temperature bins of width B0 (a

parameter). For each bin, the height of the histogram measures the total length of time

(summed over all sensors) for which any of the locations experiences a temperature that

lies in the range specified by that bin. This query involves a grouping operation prior to

aggregation:

48

Moving Average: Regression Model vs Raw Data
25

0)0

E
F-
0 10

a,

< 5

Time (seconds)

Figure 4-1: 10-second moving averages over 25 minutes of temperature data, computed
over raw data and over a piecewise linear regression model with FunctionDB. The spikes
in the average are errors due to missing data, which are corrected by regression.

SELECT ATOUNT(time) FROM tempmodel

GROUP BY temp GROUPSIZE B0

The FunctionDB plan for the above query consists of an algebraic GROUP BY operation on

the dependent variable, temp, followed by an AMOUNT aggregate over the independent vari-

able, time. The query consists entirely of algebraic operators. The GROUP BY operation

works by first inverting the function and then splitting temperature intervals into groups

with the specified size Bo, and the aggregation works by summing the lengths of all the

time intervals that fall within each temperature bucket (Section 4.3). The gridding query

plan, on the other hand, reads a gridded representation (gridded on time) of data off disk

and processes it. This query plan uses a traditional GROUP BY operator to map temperature

values to bins of size B0, and the discrete SQL COUNT aggregate to count the number of

time samples that lie within each bin. The count of time samples within each temperature

bin is used to approximate the actual query result.

Figure 4-2 shows the execution time for the histogram query when using FunctionDB,

as compared to gridding. Results are shown for 4 values of the grid size at which the query

49

Histogram Query: Performance (1 degree C bins)

10000 - -

1000

MFunctionDB
E GridRaw

- 100 MGrid_2Raw
E Grid_4Raw
A Grid_8Raw

S10
o.

1
CPU I/O Total

Figure 4-2: Performance of FunctionDB compared to gridding with different grid sizes, on
histogram query. The base grid size, "Grid-Raw", is equal to the average spacing of raw
temperatures (1 sec). The other three grid sizes are successively larger multiples of this
spacing (2 sec, 4 sec, 8 sec).

can be executed without significant loss of accuracy. The figure shows that FunctionDB is

faster than the gridding strategies by an order of magnitude in terms of both CPU and I/O

cost. Both CPU and 1/0 savings are due to FunctionDB's small footprint: the FunctionDB

query plan needs to read, allocate memory for and process only 5360 tuples (one per func-

tion piece). On the other hand, "Grid._Raw" (gridding with the same spacing as the raw

data) needs to read and process ~ 1,000,000 discrete points, and hence performs an order

of magnitude worse.

Figure 4-2 indicates that it is possible to reduce gridding footprint, and hence process-

ing time, by widening grid size. Doing so, however, adversely impacts query accuracy.

Figure 4-3 shows the discretization error introduced by gridding (averaged over all bins)

on the histogram query, as a function of grid size. The error is computed as a percent de-

viation from the result of the algebraic query plan, which does not suffer from this error.

The graph shows that discretization error grows significantly with grid size. Hence, using

a widely spaced grid is not a viable option.

50

Histogram Query: Discretization Error vs Grid Size
25 B in s

Bin size 0.5 degrees C -----
Bin size 1 degrees C --- e---
Bin size 2 degrees C -- -

20

0-

0
" 15

0 2

GrZ SieOTm ttiue (s---nds

10

_:A.

o

00 2 4 6 10 12 14 16
GrdSize On Time Attribute (seconds)

Figure 4-3: Discretization error (% deviation from algebraic answer) due to gridding, as a
function of grid size, averaged over all bins for the histogram query.

The discretization error in Figure 4-2 results from sampling, which is an imperfect way

to compute the aggregate of a continuous function. The gridding approach samples tem-

perature data at discrete time intervals and counts the number of temperature observations

in each bin. This becomes inaccurate when the sampling interval is comparable to a time

scale over which temperature varies significantly (and hence affects the bin to which sam-

pled temperature readings are assigned). As the figure shows, the error is exacerbated for

queries that group temperature into smaller bins.

While we have used FunctionDB results as the baseline for computing error in the

above experiment, the actual accuracy of a FunctionDB query plan is clearly limited by

the inherent error in raw data and in the model fit by the user. The experiments above

(and for the trajectory similarity query, which follows) are mainly intended to show that

gridding introduces significant additional error, while FunctionDB does not. An end-to-

end comparison of query accuracy is difficult to obtain in this application, because the

sensor data is noisy in addition to having missing values, and hence there we do not have a

ground truth to compare against. On the other hand, the GPS trajectory data (Section 4.4.3,

which follows this section) is more accurate, with gaps in the data being the chief rationale

51

for modeling (with the exception of a few outliers which are possible to recognize and filter

out after performing the regression fit). It is therefore possible to validate our regression

fit in that example: the results of a systematic cross-validation experiment for the Cartel

trajectory data are presented in Section 4.4.4.

Also, we recognize that it might be possible to implement an adaptively spaced sam-

pling strategy to reduce discretization error, but this is more complex to implement and

harder to generalize to arbitrary queries. Algebraic query processing permits a simpler

implementation, achieves zero discretization error, and at the same time provides good

performance.

While algebraic query processing results in a clear performance win for aggregate

queries that do not need to grid results at any point in a query plan, some queries (in-

cluding simple selections) do need to grid results for display or writing to a file, in order to

provide the familiar output semantics of a traditional DBMS. In such situations, algebraic

query execution does not always outperform gridding, but is still beneficial for selective

queries, if gridding is performed after selection. Our second query determines when the

temperature exceeds a particular cutoff, TO:

SELECT time, temp FROM tempmodel

WHERE temp > To GRID Go

The query takes an additional parameter Go, which specifies the granularity with which

results are gridded for display to the user. The FunctionDB query plan for selection uses an

algebraic root finding procedure (Algorithm 1, Section 4.3), but then applies GRID to the

selected functions for displaying the result of selection. The gridding approach applies a

traditional selection directly to data gridded at regular intervals of the time attribute.

Figure 4-4 shows the total query execution time (CPU + 10) for the above query, for

three different values of the cutoff temperature To. These values correspond to three dif-

ferent predicate selectivities: Not Selective (~ 70% of tuples pass the filter), Selective (-

20% of tuples pass), and Highly Selective (only ~ 2% of tuples pass). Algebraic query

processing yields significant benefits for the selective query plan, because this plan only

needs to grid 2% of the data for output. The benefits are less pronounced for the less selec-

52

tive query plan, and there is no difference for a query plan that needs to output most of the

data, because gridding is the main bottleneck in both query plans. We have repeated this

experiment for larger values of output grid size Go ; the relative results and conclusions are

unchanged as long as the grid size is not too wide.

Selection Performance vs Selectivity

2 0 -------

. 18
(FunctionDB

C 16 - Gridding0

14-

E 12

C 10
0

8
U
X 6

LU

O2

Not Selective Selective Highly Selective

Figure 4-4: Selection performance of FunctionDB compared to gridding with output grid
size 1 second, for 3 values of selectivity: 70%, 20% and 2%. Algebraic processing is a win
for selective queries, which do not grid much data for display.

4.4.3 Part B: Car Trajectory Application

Our second evaluation dataset consists of vehicle trajectories from Cartel [8], fitted with a

piecewise linear model for road segments. The data consists of 1,974 vehicle trajectories

collected over a year. Our regression model consists of 72,348 road segment "pieces", used

to fit 1.65 million raw GPS readings. This model fits fewer raw data points per piece (-

20) than the regression model for temperature, because trajectories are sometimes curved

or include many turns, requiring multiple line segments for approximation.

53

For evaluation, we used a variant of the trajectory similarity query described in Sec-

tion 2.2. Given a trajectory identifier, this query finds trajectories whose endpoints are

within 1' of latitude and longitude (corresponding to ~ 1.4 km) of the endpoints of the

given trajectory. For each such neighbouring trajectory, the query lines up points on the

given trajectory with points on its neighbour based on a "distance fraction" criterion (Sec-

tion 2.2), and computes the average distance between pairs of lined up points as a similarity

metric between the trajectory and its neighbour.

To focus our benchmark on join performance, we simplified the query somewhat for

both the FunctionDB and gridding approaches, by precomputing a materialized view, fracview,

with the logical schema <tid, lon, lat, frac>. In the gridded representation, points

in the trajectory are sampled at regular intervals of the independent variable, lon. For each

point in the trajectory, frac is a real number in the range [0, 1] representing the fraction

of distance along the trajectory at which the point occurs. In the function table representa-

tion, both lat and frac are stored as piecewise linear functions of lon. This is possible

because the increase in frac along each road segment is proportional to the distance along

the segment, lat2 + Ion2 , which is a linear function of lon whenever lat is a linear func-

tion of lon. Given this, trajectory similarity involves computing a join on frac. The SQL

query is similar to that presented in Section 2.2, except that it does not compute all pairs

similarities, and it includes an additional nearness criterion.

The FunctionDB plan for trajectory similarity is completely algebraic. The major step

is an NL-Join on frac (the dependent variable) using function inversion (Section 4.3).

Joined trajectories are grouped on tid using a traditional GROUP BY. The last step maps

the algebraic expression for Euclidean distance to the functions in each tuple, and com-

putes an AVG aggregate over this expression. The expression is a hyperbolic function of

lon, of the form v = ax2 + bx + c. We have manually added this type by implementing

algebraic primitives for it. As described earlier in this chapter, arithmetic expression types

can usually be inferred at compile time in the FunctionDB framework.

The procedure for the gridded version of the join on frac is illustrated in Figure 4-5.

Each grid point on a search trajectory is matched to the point with the closest value of frac

on the (given) query trajectory using binary search on a tree data structure built on the fly,

54

4

4.5

5\
Given

Trajectory . 5

_2 Search
Trajectory

2

Total similarity:AVG(2,2,6,5,5,4.5,5)=4.1

Figure 4-5: Lining up two trajectories using a grid approach.

and average distance is computed between the pairs of points lined up in this way.

Figure 4-6 shows a CDF of the discretization error in the similarity metric (averaged

over search trajectories) computed by the gridding approach. The distribution is computed

over different choices for the query trajectory, and is shown for two grid sizes, one equal to

the raw data, and the other 8 times this size (the curves for 2 and 4 times lie in between).

The graph shows that median discretization error is larger for the wider grid size. Also,

for both grid sizes, portions of the distribution experience significant discretization error (>

15%).

Discretization error occurs in this example because the data is gridded along the Ion

attribute (Figure 4-5). Hence, each trajectory has an unequal number of grid points, un-

evenly spaced along the join attribute frac, resulting in imperfect pairings. While using a

representation gridded over frac could be more accurate in this particular case, this might

not work well for other queries. It may be possible to maintain multiple gridded repre-

sentations and infer which one to use for each query, but this would add complexity and

redundancy, and would be harder to maintain.

Figure 4-7 shows the corresponding performance results, averaged over query trajecto-

ries. FunctionDB outperforms all but one of the gridding strategies, and at the same time

has no discretization error. The improvements are not as dramatic as in the temperature

55

Trajectory Similarity: CDF Of Discretization Error

0.8 -

-o 0.6 -
0
a_

- 0.4 -

E

0.2 -

Grid Raw
Grid_8Raw

0 1

0 5 10 15 20 25
Discretization Error (%)

Figure 4-6: CDF of discretization error for two different grid sizes on trajectory similarity
query, computed over query trajectories. The error distribution has a significant tail.

histogram, because the ratio of number of grid points to pieces is somewhat lower than

in that application (as mentioned earlier). However, these results do show that algebraic

processing has significantly better performance than discrete sampling.

4.4.4 Part C: Validating Model Quality

As mentioned in the discussion of accuracy results, it is difficult to estimate end-to-end

query accuracy in experiments without knowledge of the ground truth, especially when the

raw data is itself noisy. A workaround to this problem, typically used in machine learning,

is cross validation. The high-level idea behind cross validation is to divide the available

data into two sets: a training set and an unknown test set. A model trained on the training

data is evaluated on the test data in order to gauge how effectively it can predict the ground

truth.

Two popularly used forms of cross validation are leave-one-out cross validation (LOOCV)

and k-fold cross validation. We use the latter approach. In k-fold cross validation, the data

is divided into k subsets and cross validation includes k steps. Each step involves leaving

out each of the k subsets in turn, training on the remaining (k-1) sets, and making predic-

56

Trajectory Similarity: Performance

M 10000 - -

E

E
1000

C
.0 U FunctionDB

E GridRaw
100 E Grid_2Raw

LU Grid_4Raw
* Grid_8Raw

0 10

S1
CPU I/O Total

Figure 4-7: Performance of FunctionDB on the trajectory similarity query, compared to
gridding with different grid sizes. As before, the grid sizes are multiples (Ix, 2x, 4x, 8x) of
the average spacing of raw data in the data set.

tions on the k'h set which was left out. The error is averaged over all choices of the set left

out. It has been shown that k-fold cross validation produces an unbiased estimate of the

model generalization error.

It is possible to do cross-validation for our trajectory data by choosing contiguous seg-

ments of GPS readings which are known not to be outliers, and are hence reasonably ac-

curate. We now inject gaps into this data by leaving out consecutive segments of raw data

observations. The available raw data constitute the training set for a regression model, and

the missing (injected) gap constitutes the test set. The model can be validated by compar-

ing its predictions for values in the injected gap with the known values which were left out,

and measuring the model prediction error, given by the deviation of model prediction from

the true value. The process is repeated for different positions of the gap (as in k-fold CV)

in each trajectory, and prediction error is averaged over all these positions.

Figure 4-8 shows the result of cross validation as applied to a subset of the Cartel

trajectory data, for the regression functions used in the experiments presented earlier (these

were generated using an update algorithm which will be described in Chapter 5). Because

cross validation is expensive, we used a randomly selected subset of the data (consisting

57

Cross Validation Error Versus Injected Gap Size
60

50 -

-U 40 -

E
-'30 -

0

W2
LL~ 20 --

10 ----

Entire Model ---
Gap Predictions (CV Error) -->--

5 10 15 20 25 30 35 40 45 50
Iniected Gap Size (# Missinq Raw Observations)

Figure 4-8: Cross Validation (Gap Prediction) Error and Total Error, as a function of the
number of missing raw data observations.

of 40 trajectories) to conduct the experiment. The plot in Figure 4-8 shows the average

prediction error for points in the gap, as well as over the entire trajectory, as a function of

the number of observations left out for cross validation. For large gap sizes (> 30 missing

observations, corresponding to nearly a minute of missing GPS readings), the average CV

error is much larger than the GPS precision, but for smaller gaps less than a minute's worth

of missing data, the plot shows that regression is quite effective in predicting the missing

data.

Most of the cross-validation (CV) error in the above experiment results from missing

data at road intersections and turns (i.e., boundaries between successive model segments),

which is understandable. An underlying model of the trajectories based on actual road

segment data as opposed to regression would work better.

58

Chapter 5

Updates

Chapter 4 illustrated the benefits of algebraic query processing after regression functions

have already been fit to the data in question. In practice, however, data is not static. There

is a performance cost to fitting and maintaining a regression model as new data is inserted

into FunctionDB.

This chapter discusses the implementation of data updates in FunctionDB, focusing on

the case of appending high-rate streaming raw data into the database. This is as opposed

to handling in-place "point" updates to data, where refitting the entire regression model

is unavoidable if the existing regression model does not approximate the new data well

enough.

We introduce and discuss the major design considerations for online model mainte-

nance algorithms, and use these to guide the development of an online search-based algo-

rithm, BSearch, for approximating one dimensional streaming time series data with a set

of regression functions. The algorithm is extensible to piecewise functions fit using linear

regression (as defined in Chapter 2, Section 2.1): the basis functions for regression can

be non-linear. In addition, the algorithm has a sufficiently flexible design to incorporate a

variety of accuracy criteria useful in practice, like model generalization performance.

There is a large body of previous work on segmenting time series data (see, for example,

[11] for a comparative survey): the purpose of this chapter is not to claim fundamentally

new algorithms for this task (our algorithm draws liberally on previous work), but to imple-

ment and evaluate a practical, generalizable algorithm in the context of FunctionDB. We

59

also justify specific advantages of our choice of algorithm compared to previously proposed

solutions, in the context of our design goals.

We present an evaluation of BSearch on streaming car trajectory data from Cartel, and

show that it can support a peak (in-memory) insertion rate of nearly 1 million records/second

for piecewise linear regression on the Cartel application. At the same time, it generates

models with reasonable accuracy of fit which are compact (measured in terms of the num-

ber of pieces in the output regression model) compared to a clairvoyant (offline) model

fitting strategy that knows all the insertion data in advance.

5.1 Design Goals

We consider the problem of maintaining a regression model on an ordered stream of data

with schema <x, y>. Since the task of fitting a single regression function to a block of time

series data is easy to accomplish with Gaussian elimination (Chapter 2, Section 2.1), the

main design challenges are: (a) determining the best places to cut the data into blocks or

"pieces", so that a single model is fit to the data within a piece, and (b) deciding how much

historical data to retain and use for fitting. All the data is not be available in advance, and

an algorithm cannot keep an arbitrary large window of data history (because it would be

too expensive). With the above points in mind, we detail the important design goals for an

update algorithm in the sections that follow.

5.1.1 Model Quality

Model quality has two dimensions: accuracy of fit, and compactness, which affect query

accuracy and performance, as we have seen in Chapter 4.

Fit Accuracy. The most important consideration is how well the model serves as an ap-

proximation to ground truth.

In situations where the raw data are reasonably free of measurement noise, and model-

ing mainly serves to detect outliers or fill gaps in the data (e.g., GPS data from car trajecto-

ries), fit accuracy is easy to measure using a standard fit error metric, like the RMS (Root

60

Mean Squared) error of fit, given by i(y; - M(x;))2 , where (x;,y) are the raw data

observations (numbering N) and M(x) is the value of y predicted by the regression model

for a particular value of x.

In situations where the raw data has measurement noise and there is no easy way to

verify against ground truth, cross validation (as described in the previous chapter) can be

used to gauge the generalization performance of a regression model, and ensure against

overfitting the data. Here, the cross-validation (CV) error measured using k-fold or leave-

one-out cross validation is an appropriate metric to use in place of the raw fit error.

Model Compactness. The second measure of model quality is the compactness of the out-

put model. As shown in the query processor evaluation presented in the previous chapter,

compactness has a direct bearing on query processing performance: a more compact model

is substantially faster to process in terms of both CPU and I/O cost. In the context of online

model maintenance, compactness is challenging to achieve, as we shall see. This is because

generating a compact model requires maintaining a history of raw data tuples as well as the

model pieces already fit to this window of history, to avoid unnecessarily creating a new

piece every time a new tuple (or a small number of new tuples) arrive(s) into the system.

Model compactness can also be at conflict with the previously mentioned objective of fit

accuracy, because using fewer pieces to approximate the data requires compromising on

the fit error for some points, especially if the data is only imperfectly described by the class

of curve being used for fitting.

5.1.2 Update Performance

The second important consideration is update performance i.e., how fast the system can

update an existing regression model when new data comes in, and whether the system

can keep up when new data is inserted at a high rate. As in the case of model quality,

performance has two (related) dimensions:

* Throughput, which is the maximum rate at which the system can insert new data

into the database and build (or rebuild) a regression model to cover the newly inserted

data.

61

o Latency, which is the time delay from arrival of a new raw data observation to when

it is reflected in the function table representing the regression model.

5.2 The BSearch algorithm

One straightforward strategy to break data into pieces would be to use an algorithm like

FindPeaks (mentioned in Chapter 2)., which finds likely breakpoints in the data. Unfor-

tunately, this algorithm (finding peak or valley extrema in data) is quite specific to linear

functions, and difficult or impossible to generalize to nonlinear models. Further, it does not

provide a straightforward way to tune the accuracy of the generated fit or trade this off for

a more compact model.

For these reasons, we seek an algorithm which provides the user with direct control

over the accuracy of the generated fit. The next section introduces and describes a search-

based algorithm, BSearch, which does provide this control. The focus is mainly on data

that can have gaps, but has little or no measurement noise (like GPS data). Hence, the RMS

error of fit (as opposed to a generalization error metric, like cross-validation error) will be

the primary accuracy criterion used in the discussion and in the subsequent evaluation. The

algorithm itself should generalize to any error metric.

The high-level idea behind the segmentation algorithm described in this section, BSearch

is quite simple. The algorithm essentially works by dividing a block of data into pieces in

a top-down fashion until the models fit to all the resulting pieces satisfy a user-specified

threshold on the RMS error of fit (or other accuracy criterion), which constitutes a param-

eter to the algorithm. While BSearch shares the same high-level idea with several offline

algorithms previously proposed, for example, in the context of image processing, graphics

and time series data mining [10, 11,23], it differs in some important details.

Adapting the above idea from an offline algorithm on a block of data (as described

above) to an online algorithm on streaming data requires maintaining a window of historical

data, say W, and a pointer to the models that have previously been fit to data in this window,

if any (say Mw). BSearch works within the block of data specified by W and tries to find

appropriate points to divide the data into pieces, as per the user-specified error threshold.

62

The top down algorithms discussed in previous works use a simple divide and conquer

strategy by picking the best point in W to split the data into two parts, and recursively

invoking the algorithm on each part if the fit does not satisfy the error criterion. BSearch

chooses to instead use binary search to iteratively find pieces satisfying the error criterion

that are as large as possible. We will shortly show (Figure 5-5) that in conjunction with

batch updates, our search strategy enables us to generate more compact models for the

same error threshold compared to a simple top-down strategy.

More precisely, the BSearch algorithm works on W from left to right, starting a new

piece at the left endpoint of the block. The first decision to make is where to end this left-

most piece. The search proceeds as follows: BSearch considers the right endpoint of W

as the first candidate endpoint, and uses linear regression (with the given basis functions)

to test if this will satisfy the user-specified constraint on RMS error. If the piece has RMS

fit error larger than the RMS threshold, the midpoint of W is chosen as the next candidate

right endpoint, and so on in a fashion reminiscent of binary search - until the first end-

point satisfying the error constraint is located. The search does not stop here: rather, this

discovery narrows the search for the rightmost endpoint.

To illustrate, we revisit an example similar to that used in Chapter 3. This example

is shown in Figure 5-1. A sequence number has been added to the raw data table for

convenience of illustration. Assuming the 13 raw data readings shown in the table form

a window, BSearch would first consider fitting a model to the entire range of data i.e.,

from sequence numbers 1 to 13 (inclusive). In this case, it turns out that this model has

unacceptably high fit error, so the algorithm tries 11 = 7 as the next candidate endpoint.

Again, fitting data from sequence numbers I to 7 fails to make the cut, so 1 =4 next

is tried next. Since the data in [..4] satisfies the error criterion, the search for the best

endpoint narrows down to [4, 6]. The binary search terminates with the data in [1,6] being

recognized as the largest piece satisfying the error criterion. The function fit to this data

(y = x, as shown in the figure) becomes the leftmost piece of the overall regression model.

Having identified the leftmost piece, the left endpoint for search is now advanced be-

yond this piece (to 7 in the above example) and the procedure is repeated to locate the

endpoint for the next piece. The process terminates when the last such piece is fit to the

63

Raw Data

SNo x y

1 1 1.1

2 2 1.9

3 3 3.1

4 4 4

5 5 4.8

6 6 6.1

7 7 7.9

8 8 9.8

9 9 11.9

10 11 16.1

11 12 18

12 14 22.2

13 15 24.1

Regression Curve

y= 2x - 6
Regression

y=X

Function Table

Start x End x Slope Int

1 6 1.0 0.0

6 15 2.0 -6.0

Figure 5-1: Example raw data and corresponding function table.

data in W (this happens when the identified breakpoint coincides with the right endpoint of

W). The procedure is formally presented in Algorithm 3.

BSe arch uses binary search to keep the number of model fits (and hence matrix inver-

sions) within O(M log N) where M is the number of pieces in the output model, and N is

the size of the window of data W. Note that M depends on the chosen error threshold ET

and the distribution of the raw data in a complex way: while we do not include a theoreti-

cal analysis in this thesis, Figure 5-4 (Section 5.3) presents a practical measurement of this

dependence on the vehicle trajectory data set from Cartel.

BSearch also uses memoization to save on some computation (the "Basis" array com-

puted in step X). This is possible thanks to a nice property of linear regression: the coeffi-

cients of the basis matrix used for regression can be computed for an arbitrary interval as

the difference of two cumulative sums: W[L..R] = Basis(R) - Basis(L). This is a general-

ization of the observation made in [7] that an intermediate representation of sums can be

used to speed up regression fitting.

Algorithm 3 by itself is not enough to describe an online algorithm. After fitting models

to the data in W as described above, the next step is to slide the window of history when

64

Algorithm 3: The BSearch Algorithm

Given: A window W with N (xi, y) observations, and an RMS error threshold ET.

i Basis <- Precompute basis matrix for W[1..R] where R E 1, 2, .., N
2 Left <- 0
3 SearchL <- 0
4 while Left N do
5 SearchL <-- Left + 1
6 SearchR <- N
7 while SearchL SearchR do
8 (Model, RMSError) <- Fit(W[Left..SearchR]) using Basis
9 if RMSError < ET then

10 SearchL +- SearchR + I
11 SearchR <- N
12 else
13 SearchR <_ SearchL+SearchR

2
14 Output model for data in W[Left..SearchR]
is Left +- SearchR + I

new tuple(s) arrive. There are two important decisions that need to be made here:

History Size. BSearch needs to decide how much historical data to retain for the next

invocation of the search algorithm i.e., the size of the window W referred to above. In this

regard, we propose to minimize retained history by only retaining the data corresponding

to the rightmost piece that was fit to data in the previous window, and "freezing" (fixing)

all the previous pieces. The rationale is that retaining more history is practically useless,

because the next phase of the search algorithm will invariably find the same breakpoints as

the previous phase, and is thus redoing work unnecessarily in most cases.

There are exceptions to the above statement when the sliding window of data is small,

or the data is noisy. In these cases, freezing a segment of history without knowing all the

data in advance can mean that BSearch is sometimes a little too aggressive in breaking

data into pieces, resulting in slightly increased model size. However, as Section 5.3 will

show, the cost is quite small: our strategy of retaining only one piece's worth of data, when

coupled with a sufficiently large batch size for updates (see below) generates models with

size no worse (larger) than the model that would be fit by a clairvoyant strategy that knew

all the data in advance.

Batching. BSearch also needs to decide how often to rerun the search algorithm. In other

65

words, do we rerun the search algorithm for each new incoming tuple or not? An alternative

we consider and evaluate in this chapter is a "batch update" technique: instead of rerunning

the model fitting process for each new incoming tuple, the system waits for a fixed number

of new input tuples to accumulate, and invokes Algorithm 3 only when sufficient new tuples

are available. A form of batching was first proposed by [11] in the context of a bottom-up

segmentation algorithm; here, we implement and evaluate its benefits in the context of our

BSearch algorithm.

Batching updates potentially increases throughput by reducing the number of invoca-

tions to the potentially expensive fitting process, but at the expense of increased latency.

Moreover, batching also affects the quality of fit (both accuracy and size) in a non-obvious

way because the size of batches seen by the search algorithm affects the regression func-

tions fit to the data. Our evaluation in Section 5.3 strives to measure these tradeoffs, and

thus gauge the effectiveness of batch updates.

5.3 Evaluation

We evaluate the BSearch algorithm presented above, with respect to both peak achievable

update throughput, and quality of fit (in terms of both model size and accuracy), on the Car-

tel trajectory data described in Chapter 4. Note that the BSearch algorithm with batching,

as presented above, has two important knobs that govern performance and fit quality: the

RMS error threshold ET and the batch size used for updates, which we denote by B. One

aim of this experimental study is investigating how to set appropriate values for ET and B,

and how data- or application- dependent the best values for these parameters are likely to

be. We also compare BSearch to a simple divide-and-conquer top-down strategy discussed

in previous work ([11]), and show that principled search finds more compact models for a

given error threshold.

We measure the impact of batch updates in both the performance and accuracy exper-

iments by varying the batch size B used for updates. The experimental methodology is

similar to that used for the query processing experiments in Chapter 4: a file containing

raw data is first read into memory. Data from this file is now inserted into a function ta-

66

ble in a rate-controlled fashion at a fixed offered rate. The experiment measures the total

real (wall clock) time for inserting all the records from the file into the function table, and

uses this to calculate the actual achieved insertion throughput. Batch updates are imple-

mented as follows: the FunctionDB update operator waits for a fixed number of records to

accumulate before inserting them into the table using one pass of Algorithm 3.

5.3.1 Update Performance

Figure 5-2 shows a plot of insertion throughput in FunctionDB against the offered rate of

insertions. The plot is shown for different values of the batch size B. The RMS error thresh-

old parameter ET is kept fixed in all the experiments, at a value of 0.00010 of longitude

(- 5.5 metres), which is approximately on par with the precision of the GPS device used in

Cartel.

The plot shows that batching is beneficial, and a batch size of B - 100 records results

in the peak update throughput of - 900K records/sec. As might be expected, the graph

clearly shows that a small batch size (B < 10) is detrimental to throughput. At the extreme,

B = 1, which corresponds to rerunning Algorithm 3 for every new record inserted into the

function table, achieves a peak insertion throughput of only - 110K records per second,

nearly 8x worse than the best achieved peak throughput at larger values of B. This clearly

shows that choosing B too small is a bad idea.

What might be less obvious is that beyond a certain threshold (between 10 and 100

records in our experiment), batching has diminishing returns or can even hurt performance

slightly. The reason for this trend is that beyond a certain threshold, irrespective of batch

size, BSearch needs to perform computational work proportional to O(M log N), when

there are N records in the input data and M is a minimum number of pieces the data divides

into, depending on the error threshold ET. For very small batch sizes, BSearch generates

more pieces than necessary because it keeps a limited window of history, and hence does

more work than necessary. For batch sizes significantly larger than a threshold, we therefore

see diminishing returns on throughput. This threshold depends on ET, and is close to the

number of raw data points that would be fit by each piece when using the best offline

67

Throughput vs Offered Update Load (Different Batch Sizes)

Batch Size 1 - --
Batch Size 10 --- u---

Batch Size 100 ---
Batch Size 1000.e.

Batch Size 10000 -----

1280
0

.-------- --------------g(640 -r
----- *----- -------

320 -

x
U)160

0

(D 80
U)

40

< 20

10 1 L . . - L ' - - . l . . . i . .10 20 40 80 160 320 640 1280 2560 5120
Offered Insert Rate (x1000 Records/sec)

Figure 5-2: Performance benefit due to batch updates.

(clairvoyant) strategy. In our case, this works out to approximately B > 25 for ET ~ 5.5m.

The observation of diminishing returns on throughput is important to keep in mind,

because increasing the batch size used for updates has a negative impact on update latency

i.e., the time from insertion of a record to when this insertion is reflected in the function

table. A larger batch size implies a longer wait before insertion, because the system needs

to wait until enough tuples accumulate to form a new batch. For a low offered rate (e.g.,

one record per second) this can mean a long wait. Furthermore, a larger batch size is simply

not feasible if the insertions are bursty - e.g., a burst of insertions smaller than the batch

size followed by no insertions for a relatively long period of time would mean the original

burst would simply not be reflected in the function table, which is unacceptable.

One possible solution to this problem is to stage all updates via an intermediate buffer

which stores a crude, quickly computed approximation to the latest segments of the regres-

sion model (e.g., simply the raw points connected by line segments) which can be queried

as an interim solution. Whenever a CPU(s) becomes available, a "cleanup thread" runs over

the latest segments of the function table with a larger window size (e.g., > 100) and refits

the model using Algorithm 3, updating it in place. We leave implementing and evaluating

68

7)

0

0

0

0

CO

0)

640

320

160

80

40

20

Model Size vs Update Batch Size (Different Error Thresholds)

Error Threshold - 0.5m --
Error Threshold - 1m --- 9---
Error Threshold - 2m --- 4---

Error Threshold - 5m.A.
Error Threshold 1 1m -+.-

A ...
AA...

...........
A

-- --- . A+---.-..

10 100 1000
Update Batch Size (# Records)

10000

Figure 5-3: Model size penalty due to limited history, for different batch sizes.

a staged strategy based on BSearch to future work.

5.3.2 Fit Quality

We first investigate the impact of batch updates on model compactness. Figure 5-3 plots

the size of models output by BSearch, averaged over all the trajectories in our dataset, as

a function of the batch size used in updates. The plot is shown for different values of the

RMS error threshold ET. The graph shows that model size does depend significantly on

the batch size used for updates - a larger batch size results, on average, in a regression

model that is significantly more compact. However, as the graph shows, the output model

size does not blow up dramatically until batch sizes smaller than 10 records are used. In

particular, the regression model for B = 10 is on average only double the size that for

B = 10000. This result lends support to the thesis put forth in the previous section, namely

that increasing B drastically beyond a certain threshold may not be worth the increased

penalty in terms of latency.

Figure 5-4 drills down into more detail on the relationship between model size and the

error threshold parameter ET when using the BSearch algorithm. The plot is slightly pes-

69

1

Model Size vs Error Threshold (Different Batch Sizes)

U,)
(1)
0

0

0
a)
N

C/)

C5

480

2401

120

60

30

15
0.5 1 2 4 8 16

RMS Fit Error Threshold (Metres)
32 64

Figure 5-4: Dependence of model size on error threshold.

simistic, indicating a non-linear increase in model size with decreasing error threshold (the

graph is on a log scale). However, for the trajectory data, the tradeoff is clearly favourable

to functional processing when using a batch size of B > 500. For example, the query pro-

cessing performance results presented in Chapter 4 were obtained with an average model

size of - 40, corresponding to the point (B = 500, ET = 5m) on the graph, which is a rea-

sonable choice (because ET 5m is close to the precision of the GPS receiver). The graph

does serve as a word of caution that functional processing may not always be favourable (in

terms of performance) for data that is less well described by functions, or requires greater

precision.

5.3.3 Comparison to TopDown Algorithm

The advantage of using principled search to find the rightmost position to break off a new

model piece is that our BSearch algorithm tends to generate the largest possible pieces

given a specific error threshold. This in turn results in a compact model and better query

performance. While previous work has considered top-down algorithms which work in a

divide-and-conquer fashion (as described earlier), these algorithms tend to be more aggres-

70

Batch Size 1 -+
Batch Size 5 --- x--

Batch Size 20 --- --
Batch Size 50.-

Batch Size 100
Batch Size 500 - -

- Batch Size 1000 --

Clairvoyant (Offline) -A-

--U-

-

-
-
-

Model Size vs Error Threshold (Different Algorithms)

0

0

.

C)

0

0

480

240

120

60

30

15
0. 5 2 4 8 16

RMS Fit Error Threshold (Metres)
32 64

Figure 5-5: Size of models generated by BSearch compared to a simple top-down segmen-
tation algorithm, TopDown.

sive about segmenting data into pieces. A top-down divide and conquer algorithm fits only

two pieces to all the data in the window in the first iteration, which can often be insufficient

when the window size is significant. For this reason, the resulting models are usually not

accurate irrespective of where the algorithm decides to place the cut, and suboptimal infor-

mation is used to make the splitting decision, often resulting in unnecessary extra splits.

Figure 5-5 demonstrates this experimentally. The plot shows the size of models gen-

erated by a simple top-down algorithm, TopDown, as well as by BSearch, plotted as a

function of the error threshold. The results are shown for three different batch sizes: 1 (cor-

responding to no batching), oo (corresponding to an offline, clairvoyant algorithm), and 100

(an intermediate batch size). When using a small batch size, both algorithms perform quite

poorly in terms of compactness, but as the batch size increases, BSearch outperforms the

top-down strategy, and wins by a factor of 2x or more when working offline (corresponding

to a batch size of o).

71

BSearch, Batch Size 1 -w-
BSearch, Batch Size 100 --- E-

BSearch, Clairvoyant ---.-
Topdown, Batch Size 1 .

Topdown, Batch Size 100 ---

Topdown, Clairvoyant -

.........

-
--
--
-
-
--

1

5.3.4 Tuning Updates in FunctionDB

Armed with evidence from our performance and accuracy experiments, we now briefly

discuss how to set the parameters for BSearch, namely B and ET, for different application

requirements/contexts.

Setting Error Threshold. Setting the error threshold ET, as we have seen, primarily

depends on the relative importance of query accuracy and query performance. However,

the exact nature of the tradeoff between performance and accuracy (such as that depicted in

Figure 5-4) depends on how well the model fits the raw data. The tradeoff curve itself can

be a useful tool for users to pick a value of ET, in conjunction with known values about

the measurement precision of the raw data (for example, there is little point in picking ET

below measurement precision).

Setting Batch Size. Setting the batch size automatically is more important. Here again,

the choice depends on application requirements. For cases where query performance is

more important than update latency e.g., expensive queries over less frequently updated

data, such as analysis queries over historical time series, a larger batch size makes more

sense. For applications where query performance is less crucial, but low latency is a must,

a lower batch size is preferable. In either case, as has been discussed above, choosing a

batch size below the points-to-pieces ratio of a dataset can be detrimental to performance,

so this should be done only if instantaneous updates are a must.

72

Chapter 6

Related Work

Existing database systems provide some support for fitting models, but do not support re-

gression models as first-class objects. In commercial DBMSs, this support typically takes

the form of modeling tools and add-ons for data mining applications. For example, IBM's

Intelligent Miner [14] and Oracle Data Miner [19] support creating models using PMML

(Predictive Model Markup Language). However, these tools do not export a relational

interface to model data. Rather, models are viewed as standalone black boxes with special-

ized interfaces for fitting and visualization. A typical use of PMML involving regression

is to first fit a set of points to functions using an external tool, load those functions into

the database, and then use the functions to predict the value of some other set of points by

plugging them into the functions, typically using a stored procedure. This is very different

than the approach proposed by this thesis, where the functions themselves can be joined,

aggregated, and queried in conjunction with raw data stored in relational tables.

The work in [26] generalizes query optimization to support predicates that involve data

mining models; however, [26] is mainly focused on classification, as opposed to regression

models, which are our primary focus.

MauveDB [7] proposed querying models (including regression models) using a rela-

tional framework. FunctionDB is based on a similar idea, but extends the state of the art

by using an algebraic framework and representation, which enable substantially faster and

more accurate query execution than the gridding approach used by MauveDB.

The ideas of representing an infinite relation in a DBMS, and query processing using

73

algebraic computations are not new. Constraint query languages, proposed in the context of

querying geometric regions and formalized by [20], represent and query infinite regions as

systems of constraints. There have been prototype implementations of constraint database

systems for solving spatial queries and interpolating spatial data [6,21,22,24,25].

FunctionDB differs from constraint databases in two main ways. First, our data model

is simpler and specifically restricted to regression models. Hence, our query processor is

very different from a generalized constraint solver, and explicitly leverages the fact that ta-

bles contain functions that support algebraic primitives. FunctionDB is consequently more

extensible to new classes of models, whereas constraint databases have focused mainly on

linear constraints to keep query processing tractable. Second, the focus of our work is on

efficient query processing for regression models, while work on constraint query languages

and databases has traditionally focused on the complexity of supporting large numbers of

constraints (e.g., for linear programming applications).

Some systems (such as Postgres with PostGIS [5] extensions) support polyline and

other trajectory data as ADTs. Internally, these types have a similar structure to the curves

output by regression, but they do not support the range of operations over functional data

that our more general model supports and are targeted exclusively towards geo-spatial data.

Hence, these GIS extensions cannot, for example, compute the average value of a curve

over some range, join two curves together, or convert to or from curves and discrete points.

Moving objects databases [12, 18] have proposed query languages and representations

suitable for expressing queries on continuously varying spatio-temporal data, including

trajectories. While some of their techniques have parallels with our ideas for querying

continuous data, their work is specifically targeted at representing and querying object

trajectories, while our work aims to support a more general class of applications using

regression. Specific algorithms for similarity and indexing using piecewise line segments

and functions have also been investigated earlier for time series and spatial data e.g., [13]

and [27]. These also are interesting instances of a general class of applications supported

by FunctionDB.

Tools like MATLAB [1] support fitting regression functions, as well as algebraic and

symbolic manipulation of functions, but lack support for relational queries. Also, as argued

74

in [7], using these tools is inconvenient if data is already in a DBMS, because data needs to

be moved back and forth between the external tool and the DBMS, resulting in considerable

inconvenience and performance overhead.

Algorithms for online updates to time series models have been studied widely, and

in several application contexts (e.g.. [10, 11, 16, 23]). The update algorithm proposed in

Chapter 5 of this thesis, BSearch, draws on and adapts this body of previous work to

devise an update algorithm generalizing to a wide class of regression functions, with an

aim to meet the dual design goals of update performance and model quality in the context

of streaming updates. Our approach, while similar in spirit to top down strategies proposed

in previous work, generates more compact models by leveraging search.

75

Chapter 7

Conclusion

This thesis described and evaluated FunctionDB, a novel DBMS that supports regression

functions as a data types that can be queried and manipulated like traditional relations.

The thesis proposed a simple piecewise function representation for regression models, and

showed how to build an extensible algebraic query processor by expressing relational oper-

ations in terms of basic algebraic primitives on functions. We have evaluated and quantified

the benefits of algebraic query processing on two real-world applications that use model-

ing, and have shown that regression provides significant accuracy benefits over querying

raw data directly. In addition, we have shown that our query processor is Ox- I 00x faster,

as well as up to 15% more accurate on several realistic queries, compared to existing ap-

proaches that represent models as gridded data. The thesis has also illustrated and evaluated

the benefits of batch updates when maintaining regression models online, in terms of both

model compactness and accuracy of fit.

76

Bibliography

[1] Matlab. http://www.mathworks. com/products/matlab/.

[2] Mathematica. http://www.wolfram.com/products/mathematica/index.

html.

[3] GNU Octave. http://www.gnu.org/software/octave/octave.html.

[4] The R Project For Statistical Computing. http: //www. r-proj ect .org/.

[5] PostGIS. http://postgis.refractions.net/.

[6] Alexander Brodsky, Victor E. Segal, Jia Chen, and Pavel A. Exarkhopoulo. The

CCUBE Constraint Object-Oriented Database System. In SIGMOD Conference on

Management of Data, 1999.

[7] Amol Deshpande and Samuel Madden. MauveDB: Supporting Model-Based User

Views in Database Systems. In ACM SIGMOD Conference on Management of Data,

2006.

[8] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko, Allen

K. Miu, Eugene Shih, Hari Balakrishnan, and Samuel Madden. CarTel: A Distributed

Mobile Sensor Computing System. In 4th ACM SenSys, Boulder, CO, November

2006.

[9] E. F Codd. A Relational Model Of Data For Large Shared Data Banks. Communica-

tions of the ACM, 26(1):64-69, 1983.

77

[10] R. 0. Duda and P. E. Hart. Pattern Classification And Scene Analysis. Wiley, New

York, 1973.

[11] Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. An Online Algo-

rithm For Segmenting Time Series. In ICDM, pages 289-296, 2001.

[12] Ralf Hartmut Guting, Michael H. Bohlen, Martin Erwig, Christian S. Jensen, Nikos A.

Lorentzos, Markus Schneider, and Michalis Vazirgiannis. A Foundation for Repre-

senting and Querying Moving Objects. ACM Transactions on Database Systems,

25(l):1-42, 2000.

[13] Huanmei Wu, Betty Salzberg, Gregory C Sharp, Steve B Jiang, Hiroki Shirato, and

David Kaeli. Subsequence Matching on Structured Time Series Data. In ACM SIG-

MOD Conference on Management of Data, 2005.

[14] IBM. IBM DB2 Intelligent Miner. http: //www- 306. ibm. com/software/data/

iminer/.

[15] Jacob Cohen, Patricia Cohen, Stephen G. West, and Leona S. Aiken. Applied Multiple

Regression/Correlation Analysis for the Behavioral Sciences. 2002.

[16] Jim Hunter and Neil McIntosh. Knowledge-Based Event Detection in Complex Time

Series Data. In Proceedings of the Joint European Conference on Artificial Intelli-

gence in Medicine and Medical Decision Making, pages 271-280, 1999.

[17] John Fox. Applied Regression Analysis, Linear Models, and Related Methods. 1997.

[18] Michalis Vazirgiannis and Ouri Wolfson. A Spatiotemporal Model and Language for

Moving Objects on Road Networks. In SSTD, pages 20-35, 2001.

[19] Oracle. Oracle Data Miner. http://www.oracle. com/technology/products/

bi/odm/odminer .html.

[20] Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint Query Lan-

guages. In Symposium on Principles of Database Systems, pages 299-313, 1990.

78

[21] Peter Z. Revesz. Constraint databases: A survey. In Semantics in Databases, pages

209-246, 1995.

[22] Peter Z. Revesz, Rui Chen, Pradip Kanjamala, Yiming Li, Yuguo Liu, and Yonghui

Wang. The MLPQ/GIS Constraint Database System. In SIGMOD Conference on

Management of Data, 2000.

[23] U. Ramer. An Iterative Procedure For The Polygonal Approximation Of Plane

Curves. In Computer Graphics And Image Processing, volume 1, pages 244-256.

[24] Stephane Grumbach, Philippe Rigaux, and Luc Segoufin. The DEDALE system for

complex spatial queries. In SIGMOD Conference on Management of Data, pages

213-224, 1998.

[25] Stephane Grumbach, Philippe Rigaux, and Luc Segoufin. Manipulating Interpolated

Data is Easier than You Thought. In The VLDB Journal, pages 156-165, 2000.

[26] Surajit Chaudhuri, Vivek R. Narasayya, and Sunita Sarawagi. Efficient Evaluation of

Queries with Mining Predicates. In International Conference on Data Engineering,

2002.

[27] Yuhan Cai and Raymond Ng. Indexing Spatio-Temporal Trajectories with Chebyshev

Polynomials. In ACM SIGMOD Conference on Management of Data, 2004.

79

