1,755 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Compressive Sampling based Multiple Symbol Differential Detection for UWB Communications

    Get PDF
    Compressive sampling (CS) based multiple sym- bol differential detectors are proposed for impulse-radio ultra- wideband signaling, using the principles of generalized likelihood ratio tests. The CS based detectors correspond to two communica- tion scenarios. One, where the signaling is fully synchronized at the receiver and the other, where there exists a symbol level synchro- nization only. With the help of CS, the sampling rates are reduced much below the Nyquist rate to save on the high power consumed by the analog-to-digital converters. In stark contrast to the usual compressive sampling practices, the proposed detectors work on the compressed samples directly, thereby avoiding a complicated reconstruction step and resulting in a reduction of the implemen- tation complexity. To resolve the detection of multiple symbols, compressed sphere decoders are proposed as well, for both com- munication scenarios, which can further help to reduce the sys- tem complexity. Differential detection directly on the compressed symbols is generally marred by the requirement of an identical measurement process for every received symbol. Our proposed detectors are valid for scenarios where the measurement process is the same as well as where it is different for each received symbol

    Compressive-sensing-based multiuser detector for the large-scale SM-MIMO uplink

    No full text
    Conventional spatial modulation (SM) is typically considered for transmission in the downlink of smallscale MIMO systems, where a single one of a set of say 2p antenna elements (AEs) is activated for implicitly conveying p bits. By contrast, inspired by the compelling benefits of large-scale MIMO (LS-MIMO) systems, here we propose a LS-SM-MIMO scheme for the uplink (UL), where each user having multiple AEs but only a single radio frequency (RF) chain invokes SM for increasing the UL-throughput. At the same time, by relying on hundreds of AEs but a small number of RF chains, the base station (BS) can simultaneously serve multiple users whilst reducing the power consumption. Due to the large number of AEs of the UL-users and the comparably small number of RF chains at the BS, the UL multi-user signal detection becomes a challenging large-scale under-determined problem. To solve this problem, we propose a joint SM transmission scheme and a carefully designed structured compressive sensing (SCS)-based multi-user detector (MUD) to be used at the users and BS, respectively. Additionally, the cyclic-prefix single-carrier (CPSC) is used to combat the multipath channels, and a simple receive AE selection is used for the improved performance over correlated Rayleigh-fading MIMO channels. We demonstrate that the aggregate SM signal consisting of multiple UL-users’ SM signals of a CPSC block appears the distributed sparsity. Moreover, due to the joint SM transmission scheme, aggregate SM signals in the same transmission group exhibit the group sparsity. By exploiting these intrinsically sparse features, the proposed SCS-based MUD can reliably detect the resultant SM signals with low complexity. Simulation results demonstrate that the proposed SCS-based MUD achieves a better signal detection performance than its counterparts even with higher UL-throughtput
    • …
    corecore