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Abstract—Compressive sampling (CS) based multiple sym-
bol differential detectors are proposed for impulse-radio ultra-
wideband signaling, using the principles of generalized likelihood
ratio tests. The CS based detectors correspond to two communi-
cation scenarios. One, where the signaling is fully synchronized
at the receiver and the other, where there exists a symbol
level synchronization only. With the help of CS, the sampling
rates are reduced much below the Nyquist rate to save on the
high power consumed by the analog-to-digital converters. In
stark contrast to the usual compressive sampling practices, the
proposed detectors work on the compressed samples directly,
thereby avoiding a complicated reconstruction step and resulting
in a reduction of the implementation complexity. To resolve
the detection of multiple symbols, compressed sphere decoders
are proposed as well, for both communication scenarios, which
can further help to reduce the system complexity. Differential
detection directly on the compressed symbols is generally marred
by the requirement of an identical measurement process for every
received symbol. Our proposed detectors are valid for scenarios
where the measurement process is the same as well as where it
is different for each received symbol.

Index Terms—Compressive sampling (CS), multiple symbol
differential detection (MSDD), sphere decoding (SD), ultra-
wideband impulse radio (UWB-IR).

I. I NTRODUCTION

Promising the prospects of high data rates, fine time
resolution, multipath immunity and coexistence with legacy
services via frequency overlay, ultra-wideband (UWB) impulse
radios (IRs) are deemed as strong candidates for short range
connectivity, location-aware wireless sensor networks and low-
rate communications with ranging capability [1], [2]. Owing
to the ultra-large bandwidth, each transmitted pulse arrives at
the receiver scattered over hundreds of separable paths with
possible severe pulse distortion [3], [4]. Under these harsh
propagation conditions, the rich diversity of UWB channels
can be exploited by employing detection strategies based
on Rake receivers, which however, require a large number
of correlator-based fingers combined with accurate channel
estimation, thus resulting in an intensive computational load
and a high power consumption [5], [6]. Such requirements
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are contrary to the UWB objectives that call for simple
receiver processing units with moderate energy consumption.
Therefore, efficient techniques are needed in order to overcome
these impediments and facilitate a pervasive deployment of
UWB-based networks.
Background and Prior Works. A number of viable yet sub-
optimal receivers based on noncoherent detection have been
proposed in the literature for efficient energy capture while
avoiding channel estimation [7]. In the transmitted reference
(TR) scheme [8], [10], an extra information-free reference
pulse is used as a channel template by the correlator to detect
the information data, thereby causing wastage of transmitted
power and a decrease in data rate. These drawbacks can
be avoided by adopting differential detection (DD) [9], [10].
Differentially encoding the information symbols allows em-
ploying the signal received within the previous symbol interval
as a channel template for detection, thus enabling potentially
low-complexity and energy-efficient receivers. However, the
template waveform in both TR and DD schemes is nei-
ther noise-free nor interference-free, which contributesto a
substantial performance degradation. This prompted the use
of enhanced DD methods in the form of multiple symbol
differential detection (MSDD) [11], [12]. Instead of correlating
only the consecutive symbol-long received waveforms, a block
of differentially encoded symbols is detected jointly, offering
improved performance over both severe multipath fading and
interference-limited scenarios. Still, accurate pulse level timing
information has to be acquired, which in view of the low-
power and ultra-short transmitted pulses, again requires a
considerable computational effort; see e.g. [13]-[15]. Hence,
a variant of the MSDD scheme has recently been proposed in
[16] to reduce the timing restrictions, by limiting the timing
accuracy from pulse or frame level to symbol level only, while
maintaining a competitive performance.

Despite the considerable advantages offered by the symbol
level synchronization (SLS) MSDD, the delay components
required by the correlation units (on the order of tens or even
hundreds of nanoseconds) lead to hardware implementation
issues. Indeed, the long and accurate delay lines are hard to
realize in the analog domain, and a digital implementation
based on Nyquist rate (NR) sampling can heavily stress the
receiver analog-to-digital converter (ADC), thereby causing
a high power consumption [17]. In order to facilitate the
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ADC implementation, some attractive novel theories can be of
effective help on reducing the sampling frequency below the
cornerstone NR threshold, e.g., those based on sampling at the
rate of innovation (SRI) [18], [19] or compressive sampling
(CS) [20], [21]. Capitalizing on suitable properties of the
signal, like the sparsity exhibited in the time domain by the
UWB signals [3], [4], the key idea is to extract a reduced set
of compressed samples from the analog received signal, or in
other words, converting it into the compressed domain through
a few measurements taken in the analog domain; see e.g., [22],
[23]. Then, a reconstruction step from the compressed samples
may follow by applying one of the algorithms proposed in
[19]-[21], [24]-[26]. Alternatively, the reconstructionstep is
skipped and the receiver processing is based on the compressed
samples directly.

The SRI technique is applied in [27], [28] to UWB receivers
that work at sub-NR sampling but also require channel esti-
mation (CE). On the other side, the CS framework supports
a large variety of sampling kernels, e.g., random sampling,
and hence allows for a higher flexibility [20], [21]. Practical
applications of CS to the UWB scenario can be found in [29]-
[33], mostly again for coherent receivers, thereby requiring
CE. Apart from the overhead involved in the transmission of
extra information such as pilot or training symbols in these
works, one inevitably has to suffer from the complexity load
required by the reconstruction of the channel template.

A simpler yet performance competitive implementation,
consists of combining the CS framework with noncoherent
detection, as illustrated in [34]-[36]. In [34], noncoherent
receivers for differentially encoded UWB signals are designed
exploiting the CS techniques. Besides introducing a joint
reconstruction and detection scheme, a direct compressed DD
(DC-DD) is also presented, which skips the reconstruction
step, hence reducing the complexity. Building upon the DC-
DD, the work in [35] merges the concepts of CS and decision
feedback DD (DF-DD) [37]. A power-efficient and low-
complexity receiver is enabled, named as CS based (sorted)
DF-DD or csDF-DD in short, however it has to be emphasized
that: i) its robustness to timing offsets is restricted to only a
fraction of the symbol interval and,ii) the measurement matrix
is required to be the same for all the symbols within each
block.
Rationale of the Proposed Approach. The above facts indicate
that CS-based noncoherent detection can lead to promising
receiver schemes. Hence, the search for an effective way
to reduce complexity while preserving performance, fully
motivates the current paper to make a further contribution.
The basic idea we pursue, in part traced back to [36], is
threefold: i) instead of considering the DC-DD of a single
information symbol as in [34], we cast the concept of MSDD
into the CS framework, thus formalizing the CS-based MSDD
(CMSDD) scheme at sub-NR sampling;ii) in order to relax
the demanding prerequisite of sub-pulse level accuracy on
the timing synchronization, we develop a modified version of
the CMSDD which requires SLS only, in the sequel referred
to as SLS-CMSDD;iii) aimed at skipping CE, we resort to
the generalized likelihood ratio test (GLRT) principle [38] in
line with [12] and [16], according to which the generalized

log-likelihood metric (GLLM) is maximized not only over
the information symbols but also over the unknown channel
template. GLRT also helps alleviate the restrictions of the
measurement matrices to be the same for all symbols.
Contributions. The main features of our approach are detailed
as follows.

1) The proposed MSDD-like schemes are derived by avoid-
ing the reconstruction step, i.e., they work directly on
the compressed signal samples. The result is that the
sampling rate as well as the implementation complexity
related to the evaluation of the correlation coefficients
needed by the objective function, are both kept at afford-
able levels, in accordance with the UWB requirements.

2) Unlike the CS-based noncoherent receivers illustrated
so far, the measurement process can be either the same
or different from symbol to symbol, thus offering an
additional degree of freedom that can help the receiver
better adapt to various scenarios.

3) As briefly touched above, resorting to the SLS concept,
the robustness to timing errors of the proposed CS-based
schemes is brought from pulse or frame level to symbol
level. This feature relaxes the performance of the timing
synchronizer, so further lowering the overall receiver
complexity.

4) A particular effort is put on cutting back the complexity
required to optimize the objective function over each
data block for both the ideally-synchronized CMSDD
and the SLS-CMSDD, which grows exponentially in the
block size1. To this end, a modified sphere decoding
(SD) algorithm is derived enabling the joint detection
of blocks of tens of symbols at polynomial complexity.

5) Comprehensive numerical simulation results obtained
over realistic UWB scenarios corroborate our analytical
findings and demonstrate that the proposed noncoher-
ent detectors can deliver efficient performance-versus-
complexity trade-offs, and are capable of jointly relaxing
the stringent requirements of both the high sampling rate
and the accurate timing synchronization.

Organization. The rest of the paper is organized as follows.
Section II describes the signal model. After reviewing the
MSDD scheme with ideal timing synchronization, Section III
introduces the CS-based version. Section IV extends the SLS
variant of the MSDD to the CS framework, and Section V
deals with a modified scheme of SD. The simulation results
are illustrated in Section VI, and finally, in Section VII some
concluding remarks are drawn.
Notations. Matrices are in upper case bold while column
vectors are in lower case bold,[a]i is the ith entry of the
vector a, IN is the identity matrix of sizeN × N , 1M×N

is the M × N matrix with all components one,0M×N is
the M × N matrix with all components zero,(·)T denotes
transpose,(·)−1 denotes inverse,⊗ stands for the Kronecker
product,⋆ describes the convolution, diag{·} gives a block
diagonal matrix having the arguments along its main diagonal,

1We recall from [12] that the block size plays a role in determining the
performance improvements against the DD scheme, in the sense that the longer
the block the better performance.
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â is the estimate ofa, ⌊·⌋ denotes the floor function,
∆

=
defines an entity, theℓp norm of a vectora is denoted
as ||a||p = (

∑N−1
i=0 |[a]i|

p)1/p, and E{·} denotes statistical
expectation.

II. SIGNAL MODEL

For the UWB-IR signal model, each symbol is represented
by Nf frames with one pulseq(t) per frame. The symbol,
frame and pulse intervals are designated asTs, Tf and Tq,
respectively, satisfyingTs = NfTf , Tq ≪ Tf . Denoting the
symbol level waveform2 as

s(t)
∆

=

Nf−1
∑

j=0

q(t − jTf), (1)

the transmitted signal corresponding to a block ofQ + 1
consecutive symbols can be written as

u(t) =

Q
∑

k=0

bks(t − kTs) (2)

where bk ∈ {±1} are the transmitted symbols, which are
differentially encoded according to the rule

bk = bk−1ak (3)

with ak ∈ {±1} representing the information-bearing sym-
bols. Without loss of generality, we considerb0 = 1 as initial
reference symbol.

The multipath channel is assumed to be time-invariant
within an interval of length(Q + 1)Ts, which is required to
transmit (2). The delay spread is smaller thanTf such that
the overall channel fits within a single frame and hence inter-
symbol interference (ISI) is avoided. Under the assumption
that the channel impulse response (CIR) hasL paths, the
received pulse is given by

h(t)
∆

=

L−1∑

ℓ=0

αℓq(t − τℓ,0) ⋆ hLP (t), (4)

where hLP (t) is the low-pass filter at the receiver with
bandwidthW , τℓ,0

∆

= τℓ − τ , 0 ≤ ℓ ≤ L − 1, is the relative
delay of theℓth path with respect to the timing offsetτ

∆

= τ0

of the first path due to signal propagation,τℓ is the actual
delay of theℓth path at the receiver andαℓ is the respective
path gain. The symbol level received waveform can thus be
expressed as

g(t)
∆

=

Nf−1
∑

j=0

h(t − jTf ), (5)

and correspondingly, after exploiting (2) and (4)-(5), the
received signalr(t) is given by

r(t) =

Q
∑

k=0

bkg(t − kTs − τ)

︸ ︷︷ ︸

∆
=x(t)

+v(t), (6)

2Our focus is on a single-user point-to-point link, so for simplicity of
presentation, the time hopping (TH) code is not employed. Such an extension
is easy to be included. However, frame averaging may not be possible in this
case. Our model can also be extended to the multi-user scenario but it would
necessitate a compressed user template to identify a specific user.

where x(t) is the block level received signal andv(t) is
the zero-mean additive white Gaussian noise component with
varianceσ2

v .

III. MSDD W ITH EXACT TIMING SYNCHRONIZATION

In this section, we consider the MSDD scheme when exact
timing information is available at the receiver, or equivalently,
when the timing offset isτ = 0, and accordinglyτℓ,0 = τℓ. As
a first step, we revisit the MSDD scheme presented in [12] for
NR sampled UWB signals and derive it in an algebraic form
(which is needed to build mathematical foundations for the
compressed version), and denote it for simplicity as NMSDD.
Then, we propose the MSDD based on the CS framework,
referred to as CMSDD.

A. Nyquist-Rate MSDD

Denoting with1/T
∆

= N/Tf the Nyquist sampling rate, the
NR received signal (6) can be expressed as

r
∆

= [rT
0 , rT

1 , · · · , rT
Q]T (7)

whererk
∆

= [r
(0)T

k , r
(1)T

k , · · · , r
(Nf−1)T

k ]T , with

r
(j)
k

∆

= [r(kTs + jTf), r(kTs + jTf + T ),

· · · , r(kTs + jTf + NT − T )]T (8)

collecting theN NR samples of thejth frame for thekth
symbol. Similarly, we can definex, xk and x

(j)
k based on

x(t), and v, vk and v
(j)
k based onv(t). From (6), we can

then obtain that

rk = xk + vk, 0 ≤ k ≤ Q, (9)

wherexk
∆

= bk(1Nf×1 ⊗ h) is the signal part ofrk, with

h
∆

= [h(0), h(T ), · · · , h(NT − T )]T (10)

made up of the NR samples of the received pulse waveform
(4). Note thatvk is a zero-mean Gaussian distributed noise
vector with covariance matrixCv

∆

= E{vkv
T
k } = σ2

vINNf
.

Exploiting (7) and (9), the joint model for the block ofQ +1
symbols can now be written as

r = (b⊗ INNf
)(1Nf×1 ⊗ h) + v, (11)

whereb
∆

= [b0, b1, · · · , bQ]T denotes the transmitted symbols.
Hence, after defining the vector of the information symbols as
a

∆

= [a1, a2, · · · , aQ]T , the NMSDD scheme can be stated as
follows.

Proposition 1: NMSDD. The GLRT NMSDD mixed-integer
optimization problem (OP) is

â(NMSDD) = arg max
a

{

max
h

Λ(r|a,h)

}

, (12)

where the GLLM is

Λ(r|a,h)
∆

= 2Nf r̄
T (b⊗ IN )h − (Q + 1)Nfh

T h, (13)
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with r̄
∆

= [r̄T
0 , r̄T

1 , · · · , r̄T
Q]T and

r̄k
∆

=
1

Nf

Nf−1
∑

j=0

r
(j)
k (14)

which represents theN × 1 vector collecting the samples of
the average frame for thekth symbol.
Proof. Under the joint NR sampled model (11), the GLLM
can be written as

Λ(r|a,h)
∆

= 2rT (b ⊗ INNf
)(1Nf×1 ⊗ h)

−[(b⊗ INNf
)(1Nf×1 ⊗ h)]T [(b ⊗ INNf

)(1Nf×1 ⊗ h)]

= 2rT (b⊗ INNf
)(1Nf×1 ⊗ h)

−(Q + 1)(1Nf×1 ⊗ h)T (1Nf×1 ⊗ h), (15)

which can be further simplified into (13). Sinceb is a
function ofa as described in (3), (12) can be solved into two
steps according to the GLRT principle. First, the GLLM (13)
is maximized overh by setting the corresponding gradient to
zero, and then, it is optimized overa. �

B. Compressive Sampling MSDD

For the CMSDD, we assume that each received frame vector
r
(j)
k given by (8) is compressed using theM ×N frame level

fat measurement matrixΦk (i.e.,M < N ), such thatΦkΦ
T
k =

IM ,
y

(j)
k

∆

= Φkr
(j)
k , 0 ≤ j ≤ Nf − 1. (16)

Note that the compression ratioµ
∆

=
M

N
, with 0 < µ ≤ 1,

identifies how much one can economize the sampling rate,
and accordingly, the computational load of the data detector.

Upon definingyk
∆

= [y
(0)T

k ,y
(1)T

k , · · · ,y
(Nf−1)T

k ]T , the
compressed received signal within thekth symbol can then
be expressed by theMNf × 1 vector

yk = (INf
⊗ Φk)rk

= (INf
⊗ Φk)xk + ξk, 0 ≤ k ≤ Q, (17)

where ξk
∆

= (INf
⊗ Φk)vk is the noise component with

covariance matrixCξ
∆

= E{ξkξ
T
k } = σ2

vIMNf
. It should be

noted that the measurement process in (16) is performed in
the compressed analog domain; see [22]-[23] for details about
possible analog implementations.

Now from (17), we can express the joint compressed model
for the Q + 1 symbols as

y = Ψ(b ⊗ INNf
)(1Nf×1 ⊗ h) + ξ (18)

wherey
∆

= [yT
0 ,yT

1 , · · · ,yT
Q]T and ξ

∆

= [ξT
0 , ξT

1 , · · · , ξT
Q]T

are the compressed (M < N ) (Q+1)MNf × 1 measurement
and noise vectors, respectively, and

Ψ
∆

= diag
{
INf

⊗ Φ0, INf
⊗ Φ1, · · · , INf

⊗ ΦQ

}
(19)

is the(Q + 1)MNf × (Q + 1)NNf block level measurement
matrix, such thatΨΨT = I(Q+1)MNf

. Hence, the CMSDD
can be formulated as follows.

Proposition 2: CMSDD. The GLRT CMSDD integer OP is

â(CMSDD) = arg max
a

{∆(y|a)} , (20)

where the objective function is

∆(y|a) =

Q
∑

k=0

Q
∑

ℓ=0

bkbℓȳ
T
k ΦkΦ

T
ℓ ȳℓ, (21)

with

ȳk
∆

=
1

Nf

Nf−1
∑

j=0

y
(j)
k (22)

being theM × 1 vector collecting the samples of the average
compressed frame for thekth symbol.
Proof. See Appendix A. �

A number of remarks about the CMSDD can now be
highlighted.

1) If the frame level measurement matricesΦk are all
orthogonal to each other, i.e.,ΦkΦ

T
ℓ = 0M×M , ∀k, ℓ

with 0 ≤ k, ℓ ≤ Q, then∆(y|a) does not depend ona,
and accordingly the detector does not exist.

2) If the frame level measurement matricesΦk are all the
same for each symbol, i.e.,Φ0 = Φ1 = · · · = ΦQ, then
taking into account (3),∆(y|a) turns into

∆(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

k−ℓ∏

i=1

[a]i+ℓȳ
T
k ȳℓ, (23)

whereas in the case they differ from symbol to symbol,
∆(y|a) has the general form

∆(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

k−ℓ∏

i=1

[a]i+ℓȳ
T
k ΦkΦ

T
ℓ ȳℓ. (24)

3) By virtue of the CS framework, the CMSDD relies on
the evaluation of the average frame in (22), which is
performed for each symbol in the compressed domain.
This is less demanding than the implementation of (14)
based on the NR sampling. As an additional strength, the
detection process of the CMSDD avoids a reconstruction
step, which further helps in keeping the complexity at
an affordable level.

4) Concerning the performance limits of the CMSDD, if
the frame level measurement matrices are orthogonal to
each other, then the CMSDD does not work, whereas
better performance is expected if they are the same for
each symbol. However, for applications where choos-
ing identical measurement matrices is not feasible, the
CMSDD can still offer compressed detection.

5) The performance-versus-complexity trade-off enabled
by the CMSDD is expected to be governed by the
compression ratioµ as well. Indeed, the higher theµ,
the lower the performance loss, till the performance
approaches that of the NMSDD asµ → 1. This can be
established mathematically by noting that whenµ = 1
(i.e., M = N ) then ΦT

k Φk = IN (which is a general
property of orthogonal matrices). Thus,

ȳT
k ΦkΦ

T
ℓ ȳℓ = (Φkr̄k)TΦkΦ

T
ℓ (Φlr̄l) = r̄T

k r̄ℓ
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g0(t)

tτ

t

g1(t)

Ts

g(t)

t

Fig. 1. Partitioning ofg(t) into g0(t) andg1(t) for Nf = 1, in the presence
of a timing offsetτ .

and the CMSDD in (24) reduces to the NMSDD.

IV. MSDD WITH SYMBOL LEVEL SYNCHRONIZATION

In Section III, we assumed ideal timing synchronization.
This assumption means that the receiver can recover an
accurate estimate of the timing offset at the pulse level. In
this section, we will relax this computationally demanding
constraint: first, we re-describe in algebraic form the MSDD
scheme with synchronization at symbol level as proposed in
[16] using NR sampling, denoted as the SLS-NMSDD in short.
Then, we extend the above CMSDD approach to symbol level
synchronization, thus formulating the SLS-CMSDD scheme.
A coarse symbol level synchronization is thought to be avail-
able, so that the timing offsetτ is less than a symbol duration,
i.e., τ ∈ [0, Ts). Furthermore, the observation window is
increased toQ + 1 symbols in order to accommodate the
residual (unknown) timing offset.

The key idea of the MSDD with SLS is to partition the
received symbol waveformg(t) given by (5) into the two parts
g0(t) andg1(t), such that

g0(t)
∆

=

{

0 t ∈ [0, τ)

g(t − τ) t ∈ [τ, Ts)
, (25)

g1(t)
∆

=

{

g(t + Ts − τ) t ∈ [0, τ)

0 t ∈ [τ, Ts)
, (26)

as depicted in Fig. 1, for a single frame per symbol, i.e.,Nf =
1. It is apparent from (25) and (26) thatg0(t) andg1(t) depend
uponτ and are orthogonal to each other.

r(t)

t

b0 = +1 b1 = −1 b2 = +1

τ

r0 = 0g1 + b0g0 r1 = b0g1 + b1g0 r2 = b1g1 + b2g0 r3 = b2g1 + 0g0

Fig. 2. SLS model in the noiseless case withQ = 2, Nf = 1 and timing
offset τ .

A. Nyquist-rate MSDD with Symbol Level Synchronization

Denoting,Nτ
∆

= ⌊τ/T ⌋ andε
∆

= (τ−NτT ), with ε ∈ [0, T ),
the NR sampled symbol level versions ofg0(t) andg1(t) are
given by

g0
∆

= [0T
Nτ×1, g(−ε), g(T − ε),

· · · , g(NNfT − NτT − T − ε)]T , (27)

g1
∆

= [g(NNfT − NτT − ε), g(NNfT − NτT + T − ε),

· · · , g(NNfT − T − ε),0T
(NNf−Nτ )×1]

T . (28)

Thus, the NR sampled version of thekth received symbol
waveform can be represented by theNNf × 1 vector

rk = bkg0 + bk−1g1 + vk, 0 ≤ k ≤ Q + 1, (29)

where without loss of generality we assumeb−1 = bQ+1 = 0.
In view of (29), the joint SLS NR sampled model for the block
of Q + 2 symbols can be put into the form

r̊ = (b0 ⊗ INNf
)g0 + (b1 ⊗ INNf

)g1 + v̊, (30)

where b0
∆

= [b0, b1, · · · , bQ, bQ+1]
T and b1

∆

=
[b−1, b0, b1, · · · , bQ]T are the (Q + 2) × 1 extended
differential symbol vectors, while̊r

∆

= [rT
0 , rT

1 , · · · , rT
Q+1]

T

and v̊
∆

= [vT
0 ,vT

1 , · · · ,vT
Q+1]

T . Fig. 2 sketches out the SLS
model for a simple noiseless example with one frame per
symbol (Nf = 1). Due to the presence of the residual timing
offset τ ∈ [0, Ts), in order to detectQ = 2 transmitted
symbols,Q + 2 = 4 symbol intervals have to be collected,
or equivalently, the sample vectorsr0, r1, r2, r3. Hence, the
SLS-NMSDD scheme can be formulated according to the
following proposition.

Proposition 3: SLS-NMSDD. The GLRT SLS-NMSDD
mixed-integer OP is

â(SLS−NMSDD) = arg max
a

{

max
g0,g1

ΛSLS(̊r|a,g0,g1)

}

, (31)

where the GLLM is

ΛSLS(̊r|a,g0,g1)
∆

= 2̊rT
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−2gT
0 (bT

0 b1 ⊗ INNf
)g1

−
[
gT

0 (bT
0 b0 ⊗ INNf

)g0 + gT
1 (bT

1 b1 ⊗ INNf
)g1

]
. (32)
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Proof. From the joint SLS NR sampled model (30), the GLLM
can be expressed as

ΛSLS(̊r|a,g0,g1) = 2̊rT
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]T

×
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]
, (33)

which after some algebra gives (32). �

B. Compressive Sampling MSDD with Symbol Level Synchro-
nization

Bearing in mind the CMSDD and SLS-NMSDD schemes
discussed in Section III-B and Section IV-A, respectively,let
us now combine the CS and SLS frameworks. Exploiting (17)
and (29), the compressed waveform received within thekth
symbol interval reads

yk = (INf
⊗Φk)[bkg0+bk−1g1]+ξk, 0 ≤ k ≤ Q+1. (34)

Accordingly, the joint compressed model for theQ+2 symbols
takes the form

ẙ = Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]
+ ξ̊, (35)

where ẙ
∆

= [yT
0 ,yT

1 , · · · ,yT
Q+1]

T and ξ̊
∆

=

[ξT
0 , ξT

1 , · · · , ξT
Q+1]

T are the extended(Q + 2)MNf × 1
compressed measurement and noise vectors, respectively, and

Ψ̊
∆

= diag
{
INf

⊗ Φ0, INf
⊗ Φ1, · · · , INf

⊗ ΦQ+1

}
(36)

is the (Q + 2)MNf × (Q + 2)NNf extended block level
measurement matrix, such that̊ΨΨ̊T = I(Q+2)MNf

. Thus,
based on the joint model (35), the MSDD version adopting
both SLS and CS can be stated as follows.

Proposition 4: SLS-CMSDD. The GLRT SLS-CMSDD inte-
ger OP is

â(SLS−CMSDD) = argmax
a

{∆SLS(̊y|a)} , (37)

where the cost function is expressed as

∆SLS(̊y|a)
∆

=

Q
∑

k=0

Q
∑

ℓ=0

bkbℓ[y
T
k (INf

⊗ ΦkΦ
T
ℓ )yℓ

+yT
k+1(INf

⊗ Φk+1Φ
T
ℓ+1)yℓ+1]. (38)

Proof. See Appendix B. �

Some remarks about the SLS-CMSDD scheme are now in
order.

1) When the frame level measurement matricesΦk are all
orthogonal to each other, i.e.,ΦkΦ

T
ℓ = 0M×M , ∀k, ℓ

with 0 ≤ k, ℓ ≤ Q, the detector again does not exist.
2) When the frame level measurement matrices are the

same for all the symbols, i.e.,Φ0 = Φ1 = · · · = ΦQ,

the cost function (38) to be optimized takes the following
simpler form

∆SLS(̊y|a) =

Q
∑

k=1

k−1∑

ℓ=0

k−ℓ∏

i=1

[a]i+ℓ

(
yT

k yℓ + yT
k+1yℓ+1

)
,

(39)
whereas in the case they differ from symbol to symbol
its general form is

∆SLS(̊y|a) =

Q
∑

k=1

k−1∑

ℓ=0

k−ℓ∏

i=1

[a]i+ℓ

[
yT

k (INf
⊗ ΦkΦ

T
ℓ )yℓ

+ yT
k+1(INf

⊗ Φk+1Φ
T
ℓ+1)yℓ+1

]
. (40)

3) Similar to the CMSDD, the SLS-CMSDD shows the
advantage of enabling data detection while skipping
the reconstruction step, and its performance is basically
dictated by the choice on both the measurement matrices
and the compression ratioµ.

4) In view of relaxing the demanding constraints not only
on the sampling rate but also on the timing synchroniza-
tion accuracy, it is expected that SLS-CMSDD offers
more competitive performance-versus-complexity trade-
offs when compared to both the CMSDD and the SLS-
NMSDD, which require either a higher timing accuracy
or a higher sampling rate, respectively.

V. COMPRESSEDSPHEREDECODER

Despite the major advantages of CMSDD and SLS-CMSDD
as noncoherent differential detectors working directly onsub-
NR sampled signals, it can be argued from the Propositions 2
and 4 that maximizing the objective functions (24) and (40)
over all the possible realizations ofa involves an exhaustive
search that exhibits combinatorial complexity. Accordingly,
such a route turns to be quite unfeasible even for short block
sizesQ. In order to gain a manageable OP we resort to the
SD.
Basics on SD. SD is an effective iterative decoding algorithm
originally proposed to efficiently solve the shortest vector
problem (SVP) in a lattice [39]-[44], i.e.,

ŝ(SVP) = arg min
s∈ZN×1

{‖Us‖2} , (41)

whereU is the M × N full-rank generator matrix, whereas
the lattice is defined as the set ofM × 1 vectorsL(U)

∆

=
{
Us | s ∈ Z

N×1
}

. In the SD, only those lattice points are
searched iteratively that lie within a sphere of radiusρ centered
at 0M×1, i.e., only the subset of̂s ∈ Z

N×1 satisfying the con-
dition ‖Us‖2 ≤ ρ. Iteration after iteration,ρ is progressively
made smaller and smaller, so that the search space is greatly
reduced compared with a naive method based on exhaustive
search. As a result, the SVP, which is NP hard as shown
in [42], can be iteratively solved at low-degree polynomial
complexity (cubic or higher) in the lengthN of the optimal
vector to be searched for.

The SD algorithm was proposed for MSDD in [45], for
frequency-flat Rayleigh fading channels to improve the per-
formance over DF-DD [46], and successively, was extended
to UWB detection in the MSDD scheme proposed in [12]. In
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the sequel, we will illustrate how to apply the SD framework
to the CMSDD and SLS-CMSDD proposed in Section III-B
and Section IV-B, respectively, leading thus to the conceptof
CS-based SD, or CSD for short.
CS based SD. To make our problem SD-compatible, let us
reformulate the objective functions in (24) and (40) in an easy-
to-evaluate form. In the case of the CMSDD, the maximum
value of the objective function amounts to

∆Max(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

|ȳT
k ΦkΦ

T
ℓ ȳℓ|, (42)

and subtracting (24) from (42) yields an equivalent objective
function (to be minimized)

∆̆(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

|ȳT
k ΦkΦ

T
ℓ ȳℓ|

[1 − sign{ȳT
k ΦkΦ

T
ℓ ȳℓ}

k−ℓ∏

i=1

[a]i+ℓ], (43)

where, depending upon the sign of
k−ℓ∏

i=1

[a]i+ℓ , each term inside

the square brackets takes a value in{0, 2}. Similarly, in the
case of SLS-CMSDD, an equivalent objective function can be
defined as

∆̆SLS(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

|yT
k (INf

⊗ ΦkΦ
T
ℓ )yℓ

+yT
k+1(INf

⊗ Φk+1Φ
T
ℓ+1)yℓ+1|

×[1 − sign{yT
k (INf

⊗ ΦkΦ
T
ℓ )yℓ

+yT
k+1(INf

⊗ Φk+1Φ
T
ℓ+1)yℓ+1}

k−ℓ∏

i=1

[a]i+ℓ]. (44)

For the ease of notation, let us now define

Zℓ,k
∆

=







ȳT
k ΦkΦ

T
ℓ ȳℓ, CMSDD

yT
k (INf

⊗ ΦkΦ
T
ℓ )yℓ+

yT
k+1(INf

⊗ Φk+1Φ
T
ℓ+1)yℓ+1, SLS−CMSDD

(45)
Hence, the OP related to the CMSDD or SLS-CMSDD results
in the general form

âopt = argmin
a

{Ξ(y|a)} , (46)

where

Ξ(y|a)
∆

=

Q
∑

k=1

k−1∑

ℓ=0

ηℓ,k|Zℓ,k|, (47)

with

ηℓ,k
∆

=

[

1 − sign{Zℓ,k}

k−ℓ∏

i=1

[a]i+ℓ

]

(48)

andZℓ,k given by (45). From (46)-(48), the following remarks
can be obtained:i) the objective function (47) consists of the
sum of the non-negative coefficients|Zℓ,k|, weighted by the
unknownsηℓ,k ∈ {0, 2}; ii) the partial objective

Ξj(y|aj)
∆

=

j
∑

k=1

k−1∑

ℓ=0

ηℓ,k|Zℓ,k|, 1 ≤ j ≤ Q, (49)

Pseudo-Code for CSD

Input : Zℓ,k, for k = 1, · · · , Q, ℓ = 0, · · · , k − 1
Initialize : n = 0, â(0) = âDC−DD, ρ(0) = Ξ(y|âDC−DD)
Repeat

Candidate set for[â(n)]1:

A
(n)
1 = {[â(n)]1 ∈ {±1}|Ξ1(y|â

(n)
1 ) ≤ ρ(n)}

Choose a tentative estimate of[â(n)]1 from A(n)
1

Candidate set for[â(n)]2 given [â(n)]1:

A
(n)
2 = {[â(n)]2 ∈ {±1}|Ξ2(y|â

(n)
2 ) ≤ ρ(n)}

Choose a tentative estimate of[â(n)]2 from A(n)
2

...
Candidate set for[â(n)]Q given [â(n)]1, · · · , [â(n)]Q−1:

A
(n)
Q

= {[â(n)]Q ∈ {±1}|ΞQ(y|â
(n)
Q

) ≤ ρ(n)}

Choose a tentative estimate of[â(n)]Q from A(n)
Q

âopt ← â(n)

ρ(n+1) ← ΞQ(y|â(n)) = Ξ(y|âopt)

Set n = n + 1

Until A(n)
1 = ∅

Output : âopt

TABLE I

depends only onaj
∆

= [[a]1, [a]2, · · · , [a]j ]
T and givenaj−1,

aj depends only on[a]j ; iii) in light of featuresi) and ii),
(47) defines a sphere in theQ-dimensional lattice of the
vectorsa ∈ {±1}Q [42]. Therefore, (46)-(48) combined with
remarks i)-iii) fully comply with the SD framework, and
as a consequence our OP is amenable to be solved. It is
worth mentioning that the above formulation of our objective
function is not the same as the conventional SD since it
is a nonlinear function ofa. Nonetheless, the possibility of
estimating an element ofa based on the previously estimated
elements in a sequential manner, makes it solvable as an SD
problem.
Implementation of CSD. Concerning the implementation of
the iterative algorithm, at the genericnth SD iteration, a
necessary condition for any tentative estimatêa(n) to lie inside
the sphere of radiusρ(n) > 0 is given by

Ξj(y|â
(n)
j ) ≤ ρ(n), 1 ≤ j ≤ Q. (50)

Based on condition (50), the CSD can be computationally
arranged according to the pseudo-code outlined in Tab. I. We
note that the CSD algorithm is initialized by the solution
âDC−DD obtained by applying the low-complexity DC-DD
scheme proposed in [34], which also gives the initial radius
ρ(0) by evaluating (47). The iterations go on with a smaller
and smaller sphere as search space, with the candidateâ

(n)
Q

found at the previous iterations lying on its surface. When at
a given iteration, for a certainj, condition (50) is satisfied
for both values of[â(n)]j , i.e.,{±1}, a random value is taken
from the candidate setA(n)

j , and if none of the values satisfies
(50), j is decreased by1 and [â(n)]j−1 is tried with the other
value from the candidate set. Eventually, the algorithm stops
when the candidate setA(n)

1 results to be empty, i.e., all the
conditions on the candidate sets have been checked without
reducing the sphere radius, thus meaning that the objective
has safely reached its minimum value. It is worth mentioning
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that the set of coefficientsZℓ,k can be precomputed before the
iterations, or even can be hard-quantized to two levels, andthe
unknownsηℓ,k take non-negative integer-values so checking
the Q conditions at each iteration in Tab. I requires only real
or integer format additions combined with logical operations,
thus contributing in keeping the complexity at affordable levels
in solving the OP (46)-(48).

VI. SIMULATION RESULTS

In this section, the proposed sub-NR MSDD schemes are
tested through numerical simulations over realistic multipath
environments. In particular, the bit error rate (BER) metric is
quantified as a function of either the mean-bit-energy-to-noise-
spectral-density ratio defined asEb/N0

∆

= Nf ||h||
2
2/σ2

v or the
compression ratioµ, for different values of the block sizeQ
and frame numberNf , with ideal pulse level or coarse symbol
level timing synchronization.

A. Simulation Setup

The transmitted signal consists of a number of bursts
includingQ consecutive differentially encoded binary symbols
according to rule 3. In each symbol interval, the frame length
is chosen to beTf = 50 ns, whereas the transmitted pulse per
frameq(t) is selected as the second derivative of a Gaussian
shape with widthTq = 1ns. The slow-fading channel is
assumed to be time-invariant within each burst, but randomly
varying from burst to burst according to the IEEE 802.15.3a
CM1 model [4], whose maximum delay spread is25 ns. The
bandwidth of the receive low-pass filter is taken asW =
2 GHz, and consequently, the NR is4 GHz., i.e, N = 200
samples per frame. Therefore, assuming a compression ratio
of µ means that onlyM = µN samples are employed
by the detection algorithm. Further, we consider frame level
measurement matricesΦk, 0 ≤ k ≤ Q. We initially generate
them as having zero-mean equi-distributed Gaussian entries
and later orthonormalize the rows. Two different options are
considered for compressing each symbol within the burst:
i) same measurement matrix (SMM), i.e.,Φk = Φk+1,
0 ≤ k ≤ Q − 1; ii) different measurement matrix (DMM),
i.e., Φk 6= Φk+1, 0 ≤ k ≤ Q − 1.

B. BER with Ideal Timing Synchronization

Figs. 3 and 4 depict the BER metric versus theEb/N0

ratio for the SMM and DMM options, respectively, for the
compression ratioµ = 0.5, and block sizesQ = 1, 10, 15.
The number of frames per symbol is set toNf = 1 since
for ideal timing synchronization the frame averaging in (14)
or (22) is such that higher values are expected not to affect
the performance, as confirmed by Tab. II. For both figures,
increasingQ gives reasonably better performance when com-
pared withQ = 1, namely the conventional DD, regardless
of choosing SMM or DMM. Indeed, at the BER of10−3,
when moving fromQ = 1 to Q = 15 both the NMSDD and
CMSDD gain around 4 dB, regardless whether we choose
SMM or DMM. Given that the channel stays invariant at
least within the block interval, i.e.,(Q + 1)NfTf , the above

behavior is basically due to the multi-symbol structure of
both the algorithms, which advantageously exploit the signal
correlation not only between adjacent symbols as the DD
does, but also between many other symbols up to the block
size apart. Further, in spite of the 2 dB loss suffered by the
CMSDD against the NMSDD in case of SMM, the former
presents the advantage of halving the sampling rate, thus
reducing the computational load required to detect each data
burst. It is further to be remarked that changing the setup
from SMM to DMM, i.e., passing from Fig. 3 to Fig. 4,
causes the performance of CMSDD to deteriorate by 3 dB.
It can be imagined that the limiting case of this scenario
will be in line with the first remark made both in Section
III-B and Section IV-B, explaining that frame level orthogonal
measurement matrices can make the detector independent of
the differential symbols, and thus ineffective. Note that for
the sake of comparison, we also plot in Fig. 3 the results
of using sorted block-wise DF-DD (sbDF-DD) [37] and its
compressed version CS based DF-DD (csDF-DD) [35] (both
in dotted lines). The results point out that the proposed CSD-
based detector has a slight edge over the csDF-DD. Although,
both require ideal timing recovery, the latter is further limited
to the SMM scenario. On the other side, as quantified in
Section VI-C, the SLS-CMSDD is the only scheme that can
considerably relax the timing accuracy, thereby enabling good
performance-versus-complexity trade-off solutions. However,
it is worth mentioning that our proposed schemes, CMSDD
and SLS-CMSDD are not restricted to be used only with CSD
as an alternative to exhaustive search, but other strategies, e.g.,
DF can also be opted. Figs. 5 and 6 show the BER versus the
compression ratioµ at Eb/N0 = 10 dB, for both the NMSDD
and CMSDD, withQ = 1, 10, 15, and adopting the SMM and
DMM options, respectively. As expected, increasingµ, the
CMSDD performance improves till it approaches that of the
NMSDD whenµ = 1.

C. BER with Coarse Symbol Level Timing Synchronization

Concerning the SLS-based detectors, we chooseNf = 10
frames per symbol since in this configuration the timing offset
is acquired with a coarse accuracy at symbol level, and thus,
the value ofNf is expected to affect performance (as will be
shown in a while). Figs. 7 and 8 quantify the BER in case
the SMM and DMM options are adopted, respectively, with
each figure referring to both SLS-NMSDD and SLS-CMSDD
schemes, with block sizesQ = 1, 10, 15, and compression
ratio µ = 0.5. Given that the timing offset of each received
burst is uniformly distributed over the symbol interval to com-
ply with the condition of asynchronous access to the channel
and in line with the assumption that timing synchronizationis
performed at symbol level only, the BER curves are averaged
over the uniformly distributed timing offsetτ ∈ [0.1Ts, 0.9Ts].
Similar to the NMSDD and CMSDD, it is apparent that
the performance of the SLS detectors at both NR and CS
sampling improves using a larger block sizeQ, whereas the
DMM incurs again a loss of around 3 dB with respect to the
SMM option. It is worth emphasizing that the advantages of
the SLS-CMSDD are twofold, in the sense that it can relax
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the stringent requirements on both the sampling rate and the
timing accuracy at an affordable performance loss against the
more demanding NMSDD and CMSDD schemes. In addition,
similar to Figs. 5 and 6, it can be proved that asµ → 1
the SLS-CMSDD and SLS-NMSDD meet at the same BER
level. Fig. 9 shows the averaged BER for the SLS-NMSDD
and SLS-CMSDD, with SMM,Q = 10 and different values
of the frame number, namelyNf = 1, 5, 10. It can be argued
that the performance improves whenNf decreases given the
corresponding decrease in noise accumulation in the absence
of frame averaging.

In Figs. 10 and 11, we give the complexity performance of
CSD against NR SD, for varying SNR andµ, respectively. We
define the complexity metric as ’Complexity Exponent’ which
basically is the total number of sum operations consumed
during a search (since there are no multiplications in our cost
functions). As expected, the CSD has a comparatively higher
Complexity Exponent but decreases with increasing SNR
and/orµ, thereby indicating a trade-off between performance
and complexity.

Finally, in Fig. 12, we show a BER performance of CMSDD
when using different types of samplers (i.e., measurement
matrices). Although, we use a Gaussian sub-NR sampler in
general but other samplers can also be used. Fig. 12 shows the
BER performance when the Gaussian, regular and random sub-
NR samplers are used, respectively. We see that the Gaussian
sampler shows better performance than the regular sub-NR
sampler especially at lower values ofµ, whereas the random
sub-NR sampler lags behind the other two.

VII. C ONCLUSIONS

In this paper, we have presented compressive sampling
based multiple symbol differential detectors using the GLRT
approach, both in the presence of full timing information
as well as with symbol-level synchronization only. The de-
tectors avoid an explicit reconstruction step and operate on
the compressed samples directly. The detectors perform better
when the measurement matrices are the same for each symbol
within the block but have the ability to work even when
they are different. The detectors do not exist for the case
of orthogonal measurement matrices. Combined with sphere
decoding, the proposed detectors offer very low complexity
and power efficient detection possibilities.

APPENDIX

A. Proof of Proposition 2

From the joint compressed model (18), the GLLM givena

andh can be written as

Ω(y|a,h)
∆

= 2yT Ψ(b ⊗ INNf
)(1Nf×1 ⊗ h)

−[(b ⊗ INNf
)(1Nf×1 ⊗ h)]T ΨT

×Ψ[(b ⊗ INNf
)(1Nf×1 ⊗ h)], (51)

which, in view of the structure ofy, can be rearranged as

Ω(y|a,h) = 2yTΨ(b ⊗ INNf
)(1Nf×1 ⊗ h)

−(1Nf×1 ⊗ h)T (b⊗ INNf
)TΨT Ψ(b ⊗ INNf

)(1Nf×1 ⊗ h)

= 2Nf ȳ
T Φ(b⊗ IN )h

−Nfh
T (b ⊗ IN )T ΦTΦ(b ⊗ IN )h, (52)

whereΦ
∆

= diag{Φ0,Φ1, · · · ,ΦQ} is a(Q+1)M×(Q+1)N

block-diagonal matrix,̄y
∆

= [ȳT
0 , ȳT

1 , · · · , ȳT
Q]T , with ȳk given

by (22).
Following the GLRT principle, the first step is to maximize

(52) overh. Thus, setting the gradient with respect toh to
zero yields

2Nf ȳ
T Φ(b⊗IN )−2Nfh

T [(b⊗IN )TΦT Φ(b⊗IN )] = 0T ,
(53)

which leads to the estimate

ĥ = Hȳ, (54)

where

H
∆

=
[
(b ⊗ IN )T ΦTΦ(b ⊗ IN )

]−1
[Φ(b ⊗ IN )]

T
. (55)

Then, after plugging (54) into (52), we obtain the cost function

Γ(y|a)
∆

= 2Nf ȳ
T Φ(b ⊗ IN )Hȳ

−Nf [Hȳ]
T

(b⊗ IN )TΦTΦ(b ⊗ IN )Hȳ. (56)

Considering that

−Nf [Hȳ]T (b⊗ IN )TΦTΦ(b ⊗ IN )Hȳ

= −Nf ȳ
T Φ(b ⊗ IN )

[
(b ⊗ IN )TΦT Φ(b⊗ IN )

]−1

×
[
(b ⊗ IN )T ΦTΦ(b ⊗ IN )

]
Hȳ

= −Nf ȳ
T Φ(b ⊗ IN )Hȳ, (57)

after some algebra and dropping the immaterial factorNf ,
(56) can be reformulated as

Γ[y|a] = ȳT Φ(b ⊗ IN )S−1(b ⊗ IN )T ΦT ȳ, (58)

where

S
∆

= (b ⊗ IN )T ΦTΦ(b ⊗ IN ) =

Q
∑

k=0

ΦT
k Φk (59)

is a positive (semi-)definite matrix3 depending only on the
measurement matricesΦk, 0 ≤ k ≤ Q. Intensive numerical
simulations have shown that the presence ofS in (58) affects
the differential detection ofa only in a weak way, i.e., a
specificâ maximizing (58) also (approximately) maximizes

∆[y|a] = ȳT Φ(b⊗ IN )(b ⊗ IN )TΦT ȳ. (60)

Hence, after rearranging (60) according tōy and Φ, the
objective function of the CMSDD OP takes the form of (21),
which concludes the proof.

3As detailed in [34], the positive (semi-)definite property of S can be easily
shown through the eigenvalue decomposition (EVD).
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B. Proof of Proposition 4

From the joint compressed model (35), the GLLM givena,
g0 andg1 for the SLS-CMSDD can be put into the form

ΩSLS(̊y|a,g0,g1)
∆

= 2ẙT Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]T
Ψ̊T

×Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]
. (61)

After some algebra, (61) can be rearranged as

ΩSLS(̊y|a,g0,g1) = 2ẙT Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−2gT
0 (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
)g1

−gT
0 (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b0 ⊗ INNf
)g0

−gT
1 (b1 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
)g1, (62)

where ẙ and Ψ̊ are the extended measurement vector and
block level measurement matrix, respectively, defined in Sec-
tion IV-B. It is worth observing in (62) that

gT
0 (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
)g1 =

Q
∑

ℓ=1

[a]ℓ̟l, (63)

where ̟l
∆

= gT
0 (INf

⊗ ΦT
ℓ Φℓ)g1. Note that due to the

orthogonality ofg0 andg1, ̟l will have very few addends4.
Now given that it is equally probable foral to be+1 or−1, we
can expect that the result can (on the average) be considered
as vanishing for a sufficiently large block sizeQ. Hence, the
objective function in (62) can be further simplified as

ΩSLS(̊y|a,g0,g1) ≃ 2ẙT Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−gT
0 (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b0 ⊗ INNf
)g0

−gT
1 (b1 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
)g1. (64)

In accordance with the GLRT principle, setting the gradient
of (64) to zero with respect tog0 andg1 gives

ĝi = Giẙ, i = 0, 1, (65)

where

Gi
∆

=
[

(bi ⊗ INNf
)T Ψ̊T Ψ̊(bi ⊗ INNf

)
]−1

×
[

Ψ̊(bi ⊗ INNf
)
]T

, i = 0, 1. (66)

Thus, upon plugging (65) into (64), after some algebra we
obtain

ΓSLS(̊y|a)
∆

= ẙT Ψ̊(b0 ⊗ INNf
)S−1

0 (b0 ⊗ INNf
)T Ψ̊T ẙ

+ẙT Ψ̊(b1 ⊗ INNf
)S−1

1 (b1 ⊗ INNf
)T Ψ̊T ẙ, (67)

whereS0 andS1 are defined, respectively, as

S0
∆

= (b0 ⊗ INNf
)T Ψ̊T Ψ̊(b0 ⊗ INNf

)

= INf
⊗

Q
∑

k=0

ΦT
k Φk, (68)

4If Φl are the same, forl = 1, · · · , Q, then̟ls would also be the same,
and (63) will result in a summation over[a]ls scaled by a constant value. If
Φl are different, forl = 1, · · · , Q, then ̟ls would produce a scrambling
effect over[a]ls.

S1
∆

= (b1 ⊗ INNf
)T Ψ̊T Ψ̊(b1 ⊗ INNf

)

= INf
⊗

Q+1
∑

k=1

ΦT
k Φk. (69)

From (68)-(69), it can be remarked that:i) S0 and S1 are
independent of bothb0 andb1; ii) applying the EVD, it can
be proved thatS0 andS1 are positive (semi-)definite matrices;
iii) it can be shown that the inverses ofS0 and S1 affect
the maximization of (67) in a weak way (in terms ofa).
Hence, collecting together the above results, we are left with
the approximate cost function

∆SLS(̊y|a)
∆

= ẙT Ψ̊
[
(b0 ⊗ INNf

)(b0 ⊗ INNf
)T

+(b1 ⊗ INNf
)(b1 ⊗ INNf

)T
]
Ψ̊T ẙ.

(70)

Finally, similar to the approach pursued for the CMSDD, (70)
can be reformulated in the equivalent form given by (38), thus
concluding the proof.
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Fig. 3. BER comparison of NMSDD and CMSDD with SMM, along with
sbDF-DD and csDF-DD (dotted lines), different block sizes,Nf = 1 and
µ = 0.5.
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Fig. 4. BER comparison of NMSDD and CMSDD with DMM, different
block sizes,Nf = 1 andµ = 0.5.
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Fig. 5. BER comparison of NMSDD and CMSDD with SMM, differentblock
sizes,Nf = 1, different values ofµ andEb/N0 = 10 dB.
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Fig. 6. BER comparison of NMSDD and CMSDD with DMM, different
block sizes,Nf = 1, different values ofµ andEb/N0 = 10 dB.
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Fig. 7. BER comparison of SLS-NMSDD and SLS-CMSDD with SMM,
different block sizes,Nf = 10, µ = 0.5 andτ ∈ [0.1Ts, 0.9Ts].
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Fig. 8. BER comparison of SLS-NMSDD and SLS-CMSDD with DMM,
different block sizes,Nf = 10, µ = 0.5 andτ ∈ [0.1Ts, 0.9Ts].
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Fig. 9. BER comparison of SLS-NMSDD and SLS-CMSDD with SMM,
Q = 10, µ = 0.5, different values ofNf andτ ∈ [0.1Ts, 0.9Ts].
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Fig. 10. Complexity comparison of SD against compressed andNyquist rate
symbols, different block sizes, SMM,Nf = 1.
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Fig. 11. Complexity comparison of SD against compressed andNyquist rate
symbols, different block sizes, varyingµ, SMM, Eb/N0 = 10dB, Nf = 1.
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Fig. 12. BER comparison of CMSDD with Gaussian, regular and random
sub-NR sampler, different block sizes, SMM,Nf = 1, different values ofµ
andEb/N0 = 14 dB.


