441 research outputs found

    SIGNCRYPTION ANALYZE

    Get PDF
    The aim of this paper is to provide an overview for the research that has been done so far in signcryption area. The paper also presents the extensions for the signcryption scheme and discusses the security in signcryption. The main contribution to this paper represents the implementation of the signcryption algorithm with the examples provided.ElGamal, elliptic curves, encryption, identity-based, proxy-signcryption, public key, ring-signcryption, RSA, signcryption

    CUPS : Secure Opportunistic Cloud of Things Framework based on Attribute Based Encryption Scheme Supporting Access Policy Update

    Get PDF
    The ever‐growing number of internet connected devices, coupled with the new computing trends, namely within emerging opportunistic networks, engenders several security concerns. Most of the exchanged data between the internet of things (IoT) devices are not adequately secured due to resource constraints on IoT devices. Attribute‐based encryption is a promising cryptographic mechanism suitable for distributed environments, providing flexible access control to encrypted data contents. However, it imposes high decryption costs, and does not support access policy update, for highly dynamic environments. This paper presents CUPS, an ABE‐based framework for opportunistic cloud of things applications, that securely outsources data decryption process to edge nodes in order to reduce the computation overhead on the user side. CUPS allows end‐users to offload most of the decryption overhead to an edge node and verify the correctness of the received partially decrypted data from the edge node. Moreover, CUPS provides the access policy update feature with neither involving a proxy‐server, nor re‐encrypting the enciphered data contents and re‐distributing the users' secret keys. The access policy update feature in CUPS does not affect the size of the message received by the end‐user, which reduces the bandwidth and the storage usage. Our comprehensive theoretical analysis proves that CUPS outperforms existing schemes in terms of functionality, communication and computation overheads

    BICRYPTO: An Efficient System to Enhance a Security Protection

    Get PDF
    In this paper, we propose a two factor data security protection mechanism with factor revocability for cloud storage system. We leverage two different encryption technologies. One is IBE (Identity Based Encryption) and other is PKE (Public Key Encryption). This can be done by the cloud server which will immediately execute some algorithms. Many techniques effectively provide the security for cloud storage data. During transmission of data in cloud environment, encryption is an efficient and widely used technique for data security. It can be done by public key, private and other identical information between the sender and receiver.The security and efficiencyanalysis show that system is not only secure but also practical

    Design and evaluation of blockchain-based security protocols

    Get PDF
    Many security protocols rely on the assumption that the trusted third party (TTP) will behave “as it should”. However, this assumption is difficult to justify in the real world. A TTP may become malicious due to its hidden interests or having been compromised. It is publicly acknowledged that a failed TTP can easily destroy the entire security protocol. This thesis aims to provide results on how to use blockchain technologies to mitigate TTP challenges and thereby secure existing cryptographic protocols. Firstly, we formally define a smart contract-based TTP (denoted as TTP-I) and give two security protocols based on such a type of TTP as concrete instances. In this approach, a smart contract can either complement a TTP’s actions or take over the entire functions of the existing TTP. This helps to obtain many security properties such as transparency and accountability. Smart contracts, however, are not adequate to replace TTP that is capable of maintaining secret information since all the states changed by TTP-I are in plaintext and publicly accessible. To fill the gap, we propose another type of TTP (denoted as TTP-II) that enables confidential executions by combining smart contracts and Trusted Execution Environments (TEEs). To achieve this goal, we first investigate the state-of-the-art TEE-aided confidential smart contracts and then explore their core mechanisms. We further apply TTP-II to a traceable credential system and an accountable decryption system. These systems are proved secure and feasible. However, since blockchain systems suffer from scalability and performance issues, the development of blockchain-based cryptographic protocols is inevitably retarded. At last, to make better blockchain systems, we provide two core mechanisms: a weak consensus algorithm and a delegatable payment protocol. The weak consensus algorithm allows parallel block generation, improving the performance and scalability of upper-layer blockchain systems. The delegatable payment protocol creates an offline payment channel, improving the payment speed. Both proposed algorithms have been practically implemented and systematically evaluated. Notably, the weak consensus algorithm has already been taken up by industries. Video abstract: https://youtu.be/rkAatxBRau
    • 

    corecore