135,246 research outputs found

    Latent Structure Preserving Hashing

    Get PDF
    Aiming at efficient similarity search, hash functions are designed to embed high-dimensional feature descriptors to low-dimensional binary codes such that similar descriptors will lead to binary codes with a short distance in the Hamming space. It is critical to effectively maintain the intrinsic structure and preserve the original information of data in a hashing algorithm. In this paper, we propose a novel hashing algorithm called Latent Structure Preserving Hashing (LSPH), with the target of finding a well-structured low-dimensional data representation from the original high-dimensional data through a novel objective function based on Nonnegative Matrix Factorization (NMF) with their corresponding Kullback-Leibler divergence of data distribution as the regularization term. Via exploiting the joint probabilistic distribution of data, LSPH can automatically learn the latent information and successfully preserve the structure of high-dimensional data. To further achieve robust performance with complex and nonlinear data, in this paper, we also contribute a more generalized multi-layer LSPH (ML-LSPH) framework, in which hierarchical representations can be effectively learned by a multiplicative up-propagation algorithm. Once obtaining the latent representations, the hash functions can be easily acquired through multi-variable logistic regression. Experimental results on three large-scale retrieval datasets, i.e., SIFT 1M, GIST 1M and 500 K TinyImage, show that ML-LSPH can achieve better performance than the single-layer LSPH and both of them outperform existing hashing techniques on large-scale data

    ForestHash: Semantic Hashing With Shallow Random Forests and Tiny Convolutional Networks

    Full text link
    Hash codes are efficient data representations for coping with the ever growing amounts of data. In this paper, we introduce a random forest semantic hashing scheme that embeds tiny convolutional neural networks (CNN) into shallow random forests, with near-optimal information-theoretic code aggregation among trees. We start with a simple hashing scheme, where random trees in a forest act as hashing functions by setting `1' for the visited tree leaf, and `0' for the rest. We show that traditional random forests fail to generate hashes that preserve the underlying similarity between the trees, rendering the random forests approach to hashing challenging. To address this, we propose to first randomly group arriving classes at each tree split node into two groups, obtaining a significantly simplified two-class classification problem, which can be handled using a light-weight CNN weak learner. Such random class grouping scheme enables code uniqueness by enforcing each class to share its code with different classes in different trees. A non-conventional low-rank loss is further adopted for the CNN weak learners to encourage code consistency by minimizing intra-class variations and maximizing inter-class distance for the two random class groups. Finally, we introduce an information-theoretic approach for aggregating codes of individual trees into a single hash code, producing a near-optimal unique hash for each class. The proposed approach significantly outperforms state-of-the-art hashing methods for image retrieval tasks on large-scale public datasets, while performing at the level of other state-of-the-art image classification techniques while utilizing a more compact and efficient scalable representation. This work proposes a principled and robust procedure to train and deploy in parallel an ensemble of light-weight CNNs, instead of simply going deeper.Comment: Accepted to ECCV 201

    FoSR: First-order spectral rewiring for addressing oversquashing in GNNs

    Full text link
    Graph neural networks (GNNs) are able to leverage the structure of graph data by passing messages along the edges of the graph. While this allows GNNs to learn features depending on the graph structure, for certain graph topologies it leads to inefficient information propagation and a problem known as oversquashing. This has recently been linked with the curvature and spectral gap of the graph. On the other hand, adding edges to the message-passing graph can lead to increasingly similar node representations and a problem known as oversmoothing. We propose a computationally efficient algorithm that prevents oversquashing by systematically adding edges to the graph based on spectral expansion. We combine this with a relational architecture, which lets the GNN preserve the original graph structure and provably prevents oversmoothing. We find experimentally that our algorithm outperforms existing graph rewiring methods in several graph classification tasks.Comment: 21 pages, accepted to ICLR 202
    corecore