14 research outputs found

    Energy Efficient Clustering and Routing in Mobile Wireless Sensor Network

    Get PDF
    A critical need in Mobile Wireless Sensor Network (MWSN) is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes a novel hybrid multipath routing algorithm with an efficient clustering technique. A node is selected as cluster head if it has high surplus energy, better transmission range and least mobility. The Energy Aware (EA) selection mechanism and the Maximal Nodal Surplus Energy estimation technique incorporated in this algorithm improves the energy performance during routing. Simulation results can show that the proposed clustering and routing algorithm can scale well in dynamic and energy deficient mobile sensor network.Comment: 9 pages, 4 figure

    TCP over geo-routing for high mobility: vehicle grids and airborne swarms

    Get PDF
    Ad hoc wireless networks have become the architecture of choice for peer to peer communications in areas where the telecommunications infrastructure is inadequate or has failed. A major challenge is the reliable delivery of data when nodes move. The reliable Internet protocol is TCP. However, TCP performs poorly in mobile ad hoc networks, mainly because of route breakage. To overcome this problem, a robust routing protocol must be used. To this effect, Geo-routing has recently received attention in large scale, mobile systems as it does not require end- to-end path establishment and pre-computed packet forwarding routing structure at nodes. These properties make Geo-routing robust to highly dynamic route changes. For best performance, however, several parameters must be carefully tuned. In this paper we study the joint optimization of TCP and Geo-routing parame- ters to handle high speeds. We first introduce two highly mobile ad hoc scenarios that require reliable delivery, namely the vehicle urban grid and the airborne swarms. Then, we study the impact of critical system parameters (e.g., hello message ex- change rate, delay timer in TCP for out-of-order delivery, etc) on the performance of both UDP and TCP. We improve hello message effciency in Geo-routing by using an adaptive hello exchange scheme. Then, we fix the out-of-order problem in TCP by using a receiver-side out-of-order detection and delayed ack strategy. We show that these parameter adjustments are critical for effcient TCP over Geo-routing in highly mobile applications. With these enhancements our TCP with Geo-routing solution easily outperforms TCP over traditional ad hoc routing schemes, such as AODV.1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Amorphous Placement and Informed Diffusion for Timely Monitoring by Autonomous, Resource-Constrained, Mobile Sensors

    Full text link
    Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance

    Modeling and Performance Evaluation of Advanced Diffusion with Classified Data in Vehicular Sensor Networks

    Get PDF
    International audienceIn this paper, we propose a newly distributed protocol called ADCD to manage information harvesting and distribution in Vehicular Sensor Networks (VSN). ADCD aims at reducing the generated overhead avoiding network congestions as well as long latency to deliver the harvested information. The concept of ADCD is based on the characterization of sensed information (i.e. based on its importance, location and time of collection) and the diffusion of this information accordingly. Furthermore, ADCD uses an adaptive broadcasting strategy to avoid overwhelming users with messages in which they have no interest. Also, we propose in this paper a new probabilistic model for ADCD based on Markov chain. This one aims at optimally tune the parameters of ADCD, such as the optimal number of broadcaster nodes. The analytical and simulation results based on different metrics, like the overhead, the delivery ratio, the probability of a complete transmission and the minimal number of hops, are presented. These results illustrate that ADCD allows to mitigate the information redundancy and its delivery with an adequate latency while making the reception of interesting data for the drivers (related to their location) more adapted. Moreover, the ADCD protocol reduces the overhead by 90% compared to the classical broadcast and an adapted version of MobEyes. The ADCD overhead is kept stable whatever the vehicular density

    Continuous path planning for a data harvesting mobile server

    Full text link
    Abstract—We consider a queueing system composed of queues distributed at fixed locations in a continuous envi-ronment and a mobile server serving the jobs in the queues with spatially varying rates. For a fluid model of this system, we provide a necessary and sufficient stabilizability condition. Then we briefly investigate the question of server trajectory optimization for the problem of draining the initial fluid in two queues when no further arrivals occur. I

    TCP over geo-routing for high mobility: vehicle grids and airborne swarms

    Get PDF
    Ad hoc wireless networks have become the architecture of choice for peer to peer communications in areas where the telecommunications infrastructure is inadequate or has failed. A major challenge is the reliable delivery of data when nodes move. The reliable Internet protocol is TCP. However, TCP performs poorly in mobile ad hoc networks, mainly because of route breakage. To overcome this problem, a robust routing protocol must be used. To this effect, Geo-routing has recently received attention in large scale, mobile systems as it does not require end- to-end path establishment and pre-computed packet forwarding routing structure at nodes. These properties make Geo-routing robust to highly dynamic route changes. For best performance, however, several parameters must be carefully tuned. In this paper we study the joint optimization of TCP and Geo-routing parame- ters to handle high speeds. We first introduce two highly mobile ad hoc scenarios that require reliable delivery, namely the vehicle urban grid and the airborne swarms. Then, we study the impact of critical system parameters (e.g., hello message ex- change rate, delay timer in TCP for out-of-order delivery, etc) on the performance of both UDP and TCP. We improve hello message effciency in Geo-routing by using an adaptive hello exchange scheme. Then, we fix the out-of-order problem in TCP by using a receiver-side out-of-order detection and delayed ack strategy. We show that these parameter adjustments are critical for effcient TCP over Geo-routing in highly mobile applications. With these enhancements our TCP with Geo-routing solution easily outperforms TCP over traditional ad hoc routing schemes, such as AODV.1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Non-uniform sensor deployment in mobile wireless sensor networks

    Full text link

    Performance Evaluation of Vehicular Ad Hoc Networks using simulation tools

    Get PDF
    Recent studies demonstrate that the routing protocol performances in vehicular networks can improve using dynamic information on the traffic conditions. WSNs (Wireless Sensor Networks) and VANETs (Vehicular Ad Hoc Networks) are exactly related with this statement and represent the trend of wireless networks research program in the last years. In this context, a new type of network has been developed: in fact, HSVN (Hybrid Sensor and Vehicular Network) let WSNs and VANETs cooperate through dynamic information data exchanges with the aim to improve road safety, and especially to warn the driver and the co-pilot of any event occurred in the road ahead, such as traffic jam, accidents or bad weather. The results will be immediate: less accidents means more saved lives, less traffic means a pollution decrease, and from the technological point of view, this communication protocol will open the door to attractive services, such as downloading of multimedia services or internet browsing, that means easier, safer and more comfortable trips. It is out of doubt that speaking about cars and road technology developments, the market and the interests about this field increase exponentially. Recent projects such as CVIS [1] and COMeSafety [2], focused on improving the road driving, and are the concrete demonstration that this entire context can get soon very close to reality. Owing to their peculiar characteristics, VANETs require the definition of specific networking techniques, whose feasibility and performance are usually tested by means of simulation. Starting from this point, this project will present a HSVN platform, and will also introduce and evaluate a communication protocol between VANETs and WSNs using the NCTUns 6.0 [3] simulator. We will particularly analyze the performances of 2 types of Scenarios developed during our project. Both of them are in an urban context, but we will extract different useful results analyzing the packet losses, the throughput and the end-to-end packet delay
    corecore