196,155 research outputs found

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors

    Full text link
    One of the key challenges in applying reinforcement learning to complex robotic control tasks is the need to gather large amounts of experience in order to find an effective policy for the task at hand. Model-based reinforcement learning can achieve good sample efficiency, but requires the ability to learn a model of the dynamics that is good enough to learn an effective policy. In this work, we develop a model-based reinforcement learning algorithm that combines prior knowledge from previous tasks with online adaptation of the dynamics model. These two ingredients enable highly sample-efficient learning even in regimes where estimating the true dynamics is very difficult, since the online model adaptation allows the method to locally compensate for unmodeled variation in the dynamics. We encode the prior experience into a neural network dynamics model, adapt it online by progressively refitting a local linear model of the dynamics, and use model predictive control to plan under these dynamics. Our experimental results show that this approach can be used to solve a variety of complex robotic manipulation tasks in just a single attempt, using prior data from other manipulation behaviors
    • …
    corecore