934 research outputs found

    Fast Algebraic Attacks and Decomposition of Symmetric Boolean Functions

    Full text link
    Algebraic and fast algebraic attacks are power tools to analyze stream ciphers. A class of symmetric Boolean functions with maximum algebraic immunity were found vulnerable to fast algebraic attacks at EUROCRYPT'06. Recently, the notion of AAR (algebraic attack resistant) functions was introduced as a unified measure of protection against both classical algebraic and fast algebraic attacks. In this correspondence, we first give a decomposition of symmetric Boolean functions, then we show that almost all symmetric Boolean functions, including these functions with good algebraic immunity, behave badly against fast algebraic attacks, and we also prove that no symmetric Boolean functions are AAR functions. Besides, we improve the relations between algebraic degree and algebraic immunity of symmetric Boolean functions.Comment: 13 pages, submitted to IEEE Transactions on Information Theor

    Algorithm 959: VBF: A Library of C plus plus Classes for Vector Boolean Functions in Cryptography

    Full text link
    VBF is a collection of C++ classes designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This implementation uses the NTL library from Victor Shoup, adding new modules that call NTL functions and complement the existing ones, making it better suited to cryptography. The class representing a vector Boolean function can be initialized by several alternative types of data structures such as Truth Table, Trace Representation, and Algebraic Normal Form (ANF), among others. The most relevant cryptographic criteria for both block and stream ciphers as well as for hash functions can be evaluated with VBF: it obtains the nonlinearity, linearity distance, algebraic degree, linear structures, and frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions are presented. Finally, three real applications of the library are described: the first one analyzes the KASUMI block cipher, the second one analyzes the Mini-AES cipher, and the third one finds Boolean functions with very high nonlinearity, a key property for robustness against linear attacks

    A survey of metaheuristic algorithms for the design of cryptographic Boolean functions

    Get PDF
    Boolean functions are mathematical objects used in diverse domains and have been actively researched for several decades already. One domain where Boolean functions play an important role is cryptography. There, the plethora of settings one should consider and cryptographic properties that need to be fulfilled makes the search for new Boolean functions still a very active domain. There are several options to construct appropriate Boolean functions: algebraic constructions, random search, and metaheuristics. In this work, we concentrate on metaheuristic approaches and examine the related works appearing in the last 25 years. To the best of our knowledge, this is the first survey work on this topic. Additionally, we provide a new taxonomy of related works and discuss the results obtained. Finally, we finish this survey with potential future research directions.</p

    A Survey of Metaheuristic Algorithms for the Design of Cryptographic Boolean Functions

    Get PDF
    Boolean functions are mathematical objects used in diverse domains and have been actively researched for several decades already. One domain where Boolean functions play an important role is cryptography. There, the plethora of settings one should consider and cryptographic properties that need to be fulfilled makes the search for new Boolean functions still a very active domain. There are several options to construct appropriate Boolean functions: algebraic constructions, random search, and metaheuristics. In this work, we concentrate on metaheuristic approaches and examine the related works appearing in the last 25 years. To the best of our knowledge, this is the first survey work on this topic. Additionally, we provide a new taxonomy of related works and discuss the results obtained. Finally, we finish this survey with potential future research directions

    Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables

    Full text link
    In this paper, a technique on constructing nonlinear resilient Boolean functions is described. By using several sets of disjoint spectra functions on a small number of variables, an almost optimal resilient function on a large even number of variables can be constructed. It is shown that given any mm, one can construct infinitely many nn-variable (nn even), mm-resilient functions with nonlinearity >2n−1−2n/2>2^{n-1}-2^{n/2}. A large class of highly nonlinear resilient functions which were not known are obtained. Then one method to optimize the degree of the constructed functions is proposed. Last, an improved version of the main construction is given.Comment: 14 pages, 2 table
    • 

    corecore