2,379 research outputs found

    Cellular networks for smart grid communication

    Get PDF
    The next-generation electric power system, known as smart grid, relies on a robust and reliable underlying communication infrastructure to improve the efficiency of electricity distribution. Cellular networks, e.g., LTE/LTE-A systems, appear as a promising technology to facilitate the smart grid evolution. Their inherent performance characteristics and well-established ecosystem could potentially unlock unprecedented use cases, enabling real-time and autonomous distribution grid operations. However, cellular technology was not originally intended for smart grid communication, associated with highly-reliable message exchange and massive device connectivity requirements. The fundamental differences between smart grid and human-type communication challenge the classical design of cellular networks and introduce important research questions that have not been sufficiently addressed so far. Motivated by these challenges, this doctoral thesis investigates novel radio access network (RAN) design principles and performance analysis for the seamless integration of smart grid traffic in future cellular networks. Specifically, we focus on addressing the fundamental RAN problems of network scalability in massive smart grid deployments and radio resource management for smart grid and human-type traffic. The main objective of the thesis lies on the design, analysis and performance evaluation of RAN mechanisms that would render cellular networks the key enabler for emerging smart grid applications. The first part of the thesis addresses the radio access limitations in LTE-based networks for reliable and scalable smart grid communication. We first identify the congestion problem in LTE random access that arises in large-scale smart grid deployments. To overcome this, a novel random access mechanism is proposed that can efficiently support real-time distribution automation services with negligible impact on the background traffic. Motivated by the stringent reliability requirements of various smart grid operations, we then develop an analytical model of the LTE random access procedure that allows us to assess the performance of event-based monitoring traffic under various load conditions and network configurations. We further extend our analysis to include the relation between the cell size and the availability of orthogonal random access resources and we identify an additional challenge for reliable smart grid connectivity. To this end, we devise an interference- and load-aware cell planning mechanism that enhances reliability in substation automation services. Finally, we couple the problem of state estimation in wide-area monitoring systems with the reliability challenges in information acquisition. Using our developed analytical framework, we quantify the impact of imperfect communication reliability in the state estimation accuracy and we provide useful insights for the design of reliability-aware state estimators. The second part of the thesis builds on the previous one and focuses on the RAN problem of resource scheduling and sharing for smart grid and human-type traffic. We introduce a novel scheduler that achieves low latency for distribution automation traffic while resource allocation is performed in a way that keeps the degradation of cellular users at a minimum level. In addition, we investigate the benefits of Device-to-Device (D2D) transmission mode for event-based message exchange in substation automation scenarios. We design a joint mode selection and resource allocation mechanism which results in higher data rates with respect to the conventional transmission mode via the base station. An orthogonal resource partition scheme between cellular and D2D links is further proposed to prevent the underutilization of the scarce cellular spectrum. The research findings of this thesis aim to deliver novel solutions to important RAN performance issues that arise when cellular networks support smart grid communication.Las redes celulares, p.e., los sistemas LTE/LTE-A, aparecen como una tecnología prometedora para facilitar la evolución de la próxima generación del sistema eléctrico de potencia, conocido como smart grid (SG). Sin embargo, la tecnología celular no fue pensada originalmente para las comunicaciones en la SG, asociadas con el intercambio fiable de mensajes y con requisitos de conectividad de un número masivo de dispositivos. Las diferencias fundamentales entre las comunicaciones en la SG y la comunicación de tipo humano desafían el diseño clásico de las redes celulares e introducen importantes cuestiones de investigación que hasta ahora no se han abordado suficientemente. Motivada por estos retos, esta tesis doctoral investiga los principios de diseño y analiza el rendimiento de una nueva red de acceso radio (RAN) que permita una integración perfecta del tráfico de la SG en las redes celulares futuras. Nos centramos en los problemas fundamentales de escalabilidad de la RAN en despliegues de SG masivos, y en la gestión de los recursos radio para la integración del tráfico de la SG con el tráfico de tipo humano. El objetivo principal de la tesis consiste en el diseño, el análisis y la evaluación del rendimiento de los mecanismos de las RAN que convertirán a las redes celulares en el elemento clave para las aplicaciones emergentes de las SGs. La primera parte de la tesis aborda las limitaciones del acceso radio en redes LTE para la comunicación fiable y escalable en SGs. En primer lugar, identificamos el problema de congestión en el acceso aleatorio de LTE que aparece en los despliegues de SGs a gran escala. Para superar este problema, se propone un nuevo mecanismo de acceso aleatorio que permite soportar de forma eficiente los servicios de automatización de la distribución eléctrica en tiempo real, con un impacto insignificante en el tráfico de fondo. Motivados por los estrictos requisitos de fiabilidad de las diversas operaciones en la SG, desarrollamos un modelo analítico del procedimiento de acceso aleatorio de LTE que nos permite evaluar el rendimiento del tráfico de monitorización de la red eléctrica basado en eventos bajo diversas condiciones de carga y configuraciones de red. Además, ampliamos nuestro análisis para incluir la relación entre el tamaño de celda y la disponibilidad de recursos de acceso aleatorio ortogonales, e identificamos un reto adicional para la conectividad fiable en la SG. Con este fin, diseñamos un mecanismo de planificación celular que tiene en cuenta las interferencias y la carga de la red, y que mejora la fiabilidad en los servicios de automatización de las subestaciones eléctricas. Finalmente, combinamos el problema de la estimación de estado en sistemas de monitorización de redes eléctricas de área amplia con los retos de fiabilidad en la adquisición de la información. Utilizando el modelo analítico desarrollado, cuantificamos el impacto de la baja fiabilidad en las comunicaciones sobre la precisión de la estimación de estado. La segunda parte de la tesis se centra en el problema de scheduling y compartición de recursos en la RAN para el tráfico de SG y el tráfico de tipo humano. Presentamos un nuevo scheduler que proporciona baja latencia para el tráfico de automatización de la distribución eléctrica, mientras que la asignación de recursos se realiza de un modo que mantiene la degradación de los usuarios celulares en un nivel mínimo. Además, investigamos los beneficios del modo de transmisión Device-to-Device (D2D) en el intercambio de mensajes basados en eventos en escenarios de automatización de subestaciones eléctricas. Diseñamos un mecanismo conjunto de asignación de recursos y selección de modo que da como resultado tasas de datos más elevadas con respecto al modo de transmisión convencional a través de la estación base. Finalmente, se propone un esquema de partición de recursos ortogonales entre enlaces celulares y D2Postprint (published version

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A use case of low power wide area networks in future 5G healthcare applications

    Get PDF
    Abstract. The trend in all cellular evolution to the Long-Term Evolution (LTE) has always been to offer users continuously increasing data rates. However, the next leap forwards towards the 5th Generation Mobile Networks (5G) will be mainly addressing the needs of devices. Machines communicating with each other, sensors reporting to a server, or even machines communicating with humans, these are all different aspects of the same technology; the Internet of Things (IoT). The key differentiator between Machine-to-Machine (M2M) communications and IoT will be the added -feature of connecting devices and sensors not only to themselves, but also to the internet. The appropriate communications network is the key to allow this connectivity. Local Area Networks (LANs) and Wide Area Networks (WANs) have been thought of as enablers for IoT, but since they both suffered from limitations in IoT aspects, the need for a new enabling technology was evident. LPWANs are networks dedicated to catering for the needs of IoT such as providing low energy consumption for wireless devices. LPWANs can be categorized into proprietary LPWANs and cellular LPWANs. Proprietary LPWANs are created by an alliance of companies working together on creating a communications standard operating in unlicensed frequency bands. An example of proprietary LPWANs is LoRa. Whereas cellular LPWANs are standardized by the 3rd Partnership Project (3GPP) and they are basically versions of the LTE standard especially designed for machine communications. An example of cellular LPWANs is Narrowband IoT (NB IoT). This diploma thesis documents the usage of LoRa and NB IoT in a healthcare use case of IoT. It describes the steps and challenges of deploying an LTE network at a target site, which will be used by the LoRa and NB IoT sensors to transmit data through the 5G test network (5GTN) to a desired server location for storing and later analysis.Matalan tehonkulutuksen ja pitkänkantaman teknologian käyttötapaus tulevaisuuden 5G:tä hyödyntävissä terveydenhoidon sovelluksissa. Tiivistelmä. Pitemmän aikavälin tarkastelussa matkaviestintäteknologian kehittyminen nykyisin käytössä olevaan Long-Term Evolution (LTE) teknologiaan on tarkoittanut käyttäjille yhä suurempia datanopeuksia. Seuraavassa askeleessa kohti 5. sukupolven matkaviestintäverkkoja (5G) lähestytään kehitystä myös laitteiden tarpeiden lähtökohdista. Toistensa kanssa kommunikoivat koneet, palvelimille dataa lähettävät anturit tai jopa ihmisten kanssa kommunikoivat koneet ovat kaikki eri puolia samasta teknologisesta käsitteestä; esineiden internetistä (IoT). Oleellisin ero koneiden välisessä kommunikoinnissa (M2M) ja IoT:ssä on, että erinäiset laitteet tulevat olemaan yhdistettyinä paitsi toisiinsa myös internettiin. Tätä kytkentäisyyttä varten tarvitaan tarkoitukseen kehitetty matkaviestinverkko. Sekä lähiverkkoja (LAN) että suuralueverkkoja (WAN) on pidetty mahdollisina IoT mahdollistajina, mutta näiden molempien käsitteiden alle kuuluvissa teknologioissa on rajoitteita IoT:n vaatimusten lähtökohdista, joten uuden teknologian kehittäminen oli tarpeellista. Matalan tehonkulutuksen suuralueverkko (LP-WAN) on käsite, johon luokitellaan eri teknologioita, joita on kehitetty erityisesti IoT:n tarpeista lähtien. LP-WAN voidaan jaotella ainakin itse kehitettyihin ja matkaviestinverkkoihin perustuviin teknologisiin ratkaisuihin. Itse kehitetyt ratkaisut on luotu lukuisten yritysten yhteenliittymissä eli alliansseissa ja nämä ratkaisut keskittyvät lisensoimattomilla taajuuksilla toimiviin langattomiin ratkaisuihin, joista esimerkkinä laajasti käytössä oleva LoRa. Matkaviestinverkkoihin perustuvat lisensoiduilla taajuuksilla toimivat ratkaisut on puolestaan erikseen standardoitu 3GPP-nimisessä yhteenliittymässä, joka nykyisellään vastaa 2G, 3G ja LTE:n standardoiduista päätöksistä. Esimerkki 3GPP:n alaisesta LPWAN-luokkaan kuuluvasta teknologiasta on kapea kaistainen IoT-teknologia, NB-IoT. Tässä diplomityössä keskitytään terveydenhoidon käyttötapaukseen, missä antureiden mittaamaa tietoa siirretään langattomasti käyttäen sekä LoRa että NB-IoT teknologioita. Työssä kuvataan eri vaiheet ja haasteet, joita liittyi kun rakennetaan erikseen tiettyyn kohteeseen LTE-verkon radiopeitto, jotta LoRa:a ja NB-IoT:a käyttävät anturit saadaan välittämään mitattua dataa halutulle palvelimelle säilytykseen ja myöhempää analysointia varten. LTE-radiopeiton rakensi Oulun yliopiston omistama 5G testiverkko, jonka tarkoitus on tukea sekä tutkimusta että ympäröivää ekosysteemiä tulevaisuuden 5G:n kehityksessä
    corecore