1,277 research outputs found
Cover-Encodings of Fitness Landscapes
The traditional way of tackling discrete optimization problems is by using
local search on suitably defined cost or fitness landscapes. Such approaches
are however limited by the slowing down that occurs when the local minima that
are a feature of the typically rugged landscapes encountered arrest the
progress of the search process. Another way of tackling optimization problems
is by the use of heuristic approximations to estimate a global cost minimum.
Here we present a combination of these two approaches by using cover-encoding
maps which map processes from a larger search space to subsets of the original
search space. The key idea is to construct cover-encoding maps with the help of
suitable heuristics that single out near-optimal solutions and result in
landscapes on the larger search space that no longer exhibit trapping local
minima. We present cover-encoding maps for the problems of the traveling
salesman, number partitioning, maximum matching and maximum clique; the
practical feasibility of our method is demonstrated by simulations of adaptive
walks on the corresponding encoded landscapes which find the global minima for
these problems.Comment: 15 pages, 4 figure
Counting and Enumerating Crossing-free Geometric Graphs
We describe a framework for counting and enumerating various types of
crossing-free geometric graphs on a planar point set. The framework generalizes
ideas of Alvarez and Seidel, who used them to count triangulations in time
where is the number of points. The main idea is to reduce the
problem of counting geometric graphs to counting source-sink paths in a
directed acyclic graph.
The following new results will emerge. The number of all crossing-free
geometric graphs can be computed in time for some .
The number of crossing-free convex partitions can be computed in time
. The number of crossing-free perfect matchings can be computed in
time . The number of convex subdivisions can be computed in time
. The number of crossing-free spanning trees can be computed in time
for some . The number of crossing-free spanning cycles
can be computed in time for some .
With the same bounds on the running time we can construct data structures
which allow fast enumeration of the respective classes. For example, after
time of preprocessing we can enumerate the set of all crossing-free
perfect matchings using polynomial time per enumerated object. For
crossing-free perfect matchings and convex partitions we further obtain
enumeration algorithms where the time delay for each (in particular, the first)
output is bounded by a polynomial in .
All described algorithms are comparatively simple, both in terms of their
analysis and implementation
Linear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs
A bipartite graph is convex if the vertices in can be
linearly ordered such that for each vertex , the neighbors of are
consecutive in the ordering of . An induced matching of is a
matching such that no edge of connects endpoints of two different edges of
. We show that in a convex bipartite graph with vertices and
weighted edges, an induced matching of maximum total weight can be computed in
time. An unweighted convex bipartite graph has a representation of
size that records for each vertex the first and last neighbor
in the ordering of . Given such a compact representation, we compute an
induced matching of maximum cardinality in time.
In convex bipartite graphs, maximum-cardinality induced matchings are dual to
minimum chain covers. A chain cover is a covering of the edge set by chain
subgraphs, that is, subgraphs that do not contain induced matchings of more
than one edge. Given a compact representation, we compute a representation of a
minimum chain cover in time. If no compact representation is given, the
cover can be computed in time.
All of our algorithms achieve optimal running time for the respective problem
and model. Previous algorithms considered only the unweighted case, and the
best algorithm for computing a maximum-cardinality induced matching or a
minimum chain cover in a convex bipartite graph had a running time of
Changing Bases: Multistage Optimization for Matroids and Matchings
This paper is motivated by the fact that many systems need to be maintained
continually while the underlying costs change over time. The challenge is to
continually maintain near-optimal solutions to the underlying optimization
problems, without creating too much churn in the solution itself. We model this
as a multistage combinatorial optimization problem where the input is a
sequence of cost functions (one for each time step); while we can change the
solution from step to step, we incur an additional cost for every such change.
We study the multistage matroid maintenance problem, where we need to maintain
a base of a matroid in each time step under the changing cost functions and
acquisition costs for adding new elements. The online version of this problem
generalizes online paging. E.g., given a graph, we need to maintain a spanning
tree at each step: we pay for the cost of the tree at time
, and also for the number of edges changed at
this step. Our main result is an -approximation, where is
the number of elements/edges and is the rank of the matroid. We also give
an approximation for the offline version of the problem. These
bounds hold when the acquisition costs are non-uniform, in which caseboth these
results are the best possible unless P=NP.
We also study the perfect matching version of the problem, where we must
maintain a perfect matching at each step under changing cost functions and
costs for adding new elements. Surprisingly, the hardness drastically
increases: for any constant , there is no
-approximation to the multistage matching maintenance
problem, even in the offline case
An ETH-Tight Exact Algorithm for Euclidean TSP
We study exact algorithms for {\sc Euclidean TSP} in . In the
early 1990s algorithms with running time were presented for
the planar case, and some years later an algorithm with
running time was presented for any . Despite significant interest in
subexponential exact algorithms over the past decade, there has been no
progress on {\sc Euclidean TSP}, except for a lower bound stating that the
problem admits no algorithm unless ETH fails. Up to
constant factors in the exponent, we settle the complexity of {\sc Euclidean
TSP} by giving a algorithm and by showing that a
algorithm does not exist unless ETH fails.Comment: To appear in FOCS 201
The Query-commit Problem
In the query-commit problem we are given a graph where edges have distinct
probabilities of existing. It is possible to query the edges of the graph, and
if the queried edge exists then its endpoints are irrevocably matched. The goal
is to find a querying strategy which maximizes the expected size of the
matching obtained. This stochastic matching setup is motivated by applications
in kidney exchanges and online dating.
In this paper we address the query-commit problem from both theoretical and
experimental perspectives. First, we show that a simple class of edges can be
queried without compromising the optimality of the strategy. This property is
then used to obtain in polynomial time an optimal querying strategy when the
input graph is sparse. Next we turn our attentions to the kidney exchange
application, focusing on instances modeled over real data from existing
exchange programs. We prove that, as the number of nodes grows, almost every
instance admits a strategy which matches almost all nodes. This result supports
the intuition that more exchanges are possible on a larger pool of
patient/donors and gives theoretical justification for unifying the existing
exchange programs. Finally, we evaluate experimentally different querying
strategies over kidney exchange instances. We show that even very simple
heuristics perform fairly well, being within 1.5% of an optimal clairvoyant
strategy, that knows in advance the edges in the graph. In such a
time-sensitive application, this result motivates the use of committing
strategies
Robust Assignments via Ear Decompositions and Randomized Rounding
Many real-life planning problems require making a priori decisions before all
parameters of the problem have been revealed. An important special case of such
problem arises in scheduling problems, where a set of tasks needs to be
assigned to the available set of machines or personnel (resources), in a way
that all tasks have assigned resources, and no two tasks share the same
resource. In its nominal form, the resulting computational problem becomes the
\emph{assignment problem} on general bipartite graphs.
This paper deals with a robust variant of the assignment problem modeling
situations where certain edges in the corresponding graph are \emph{vulnerable}
and may become unavailable after a solution has been chosen. The goal is to
choose a minimum-cost collection of edges such that if any vulnerable edge
becomes unavailable, the remaining part of the solution contains an assignment
of all tasks.
We present approximation results and hardness proofs for this type of
problems, and establish several connections to well-known concepts from
matching theory, robust optimization and LP-based techniques.Comment: Full version of ICALP 2016 pape
The matching relaxation for a class of generalized set partitioning problems
This paper introduces a discrete relaxation for the class of combinatorial
optimization problems which can be described by a set partitioning formulation
under packing constraints. We present two combinatorial relaxations based on
computing maximum weighted matchings in suitable graphs. Besides providing dual
bounds, the relaxations are also used on a variable reduction technique and a
matheuristic. We show how that general method can be tailored to sample
applications, and also perform a successful computational evaluation with
benchmark instances of a problem in maritime logistics.Comment: 33 pages. A preliminary (4-page) version of this paper was presented
at CTW 2016 (Cologne-Twente Workshop on Graphs and Combinatorial
Optimization), with proceedings on Electronic Notes in Discrete Mathematic
- …
