11,856 research outputs found

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    An efficient method for multiobjective optimal control and optimal control subject to integral constraints

    Full text link
    We introduce a new and efficient numerical method for multicriterion optimal control and single criterion optimal control under integral constraints. The approach is based on extending the state space to include information on a "budget" remaining to satisfy each constraint; the augmented Hamilton-Jacobi-Bellman PDE is then solved numerically. The efficiency of our approach hinges on the causality in that PDE, i.e., the monotonicity of characteristic curves in one of the newly added dimensions. A semi-Lagrangian "marching" method is used to approximate the discontinuous viscosity solution efficiently. We compare this to a recently introduced "weighted sum" based algorithm for the same problem. We illustrate our method using examples from flight path planning and robotic navigation in the presence of friendly and adversarial observers.Comment: The final version accepted by J. Comp. Math. : 41 pages, 14 figures. Since the previous version: typos fixed, formatting improved, one mistake in bibliography correcte

    Computing fundamental domains for the Bruhat-Tits tree for GL2(Qp), p-adic automorphic forms, and the canonical embedding of Shimura curves

    Full text link
    We describe an algorithm for computing certain quaternionic quotients of the Bruhat-Tits tree for GL2(Qp). As an application, we describe an algorithm to obtain (conjectural) equations for the canonical embedding of Shimura curves.Comment: Accepted for publication in LMS Journal of Computation and Mathematic

    Differentially Private Release and Learning of Threshold Functions

    Full text link
    We prove new upper and lower bounds on the sample complexity of (Ļµ,Ī“)(\epsilon, \delta) differentially private algorithms for releasing approximate answers to threshold functions. A threshold function cxc_x over a totally ordered domain XX evaluates to cx(y)=1c_x(y) = 1 if yā‰¤xy \le x, and evaluates to 00 otherwise. We give the first nontrivial lower bound for releasing thresholds with (Ļµ,Ī“)(\epsilon,\delta) differential privacy, showing that the task is impossible over an infinite domain XX, and moreover requires sample complexity nā‰„Ī©(logā”āˆ—āˆ£Xāˆ£)n \ge \Omega(\log^*|X|), which grows with the size of the domain. Inspired by the techniques used to prove this lower bound, we give an algorithm for releasing thresholds with nā‰¤2(1+o(1))logā”āˆ—āˆ£Xāˆ£n \le 2^{(1+ o(1))\log^*|X|} samples. This improves the previous best upper bound of 8(1+o(1))logā”āˆ—āˆ£Xāˆ£8^{(1 + o(1))\log^*|X|} (Beimel et al., RANDOM '13). Our sample complexity upper and lower bounds also apply to the tasks of learning distributions with respect to Kolmogorov distance and of properly PAC learning thresholds with differential privacy. The lower bound gives the first separation between the sample complexity of properly learning a concept class with (Ļµ,Ī“)(\epsilon,\delta) differential privacy and learning without privacy. For properly learning thresholds in ā„“\ell dimensions, this lower bound extends to nā‰„Ī©(ā„“ā‹…logā”āˆ—āˆ£Xāˆ£)n \ge \Omega(\ell \cdot \log^*|X|). To obtain our results, we give reductions in both directions from releasing and properly learning thresholds and the simpler interior point problem. Given a database DD of elements from XX, the interior point problem asks for an element between the smallest and largest elements in DD. We introduce new recursive constructions for bounding the sample complexity of the interior point problem, as well as further reductions and techniques for proving impossibility results for other basic problems in differential privacy.Comment: 43 page
    • ā€¦
    corecore