14,366 research outputs found

    Efficient Action Localization with Approximately Normalized Fisher Vectors

    Get PDF
    International audienceThe Fisher vector (FV) representation is a high-dimensional extension of the popular bag-of-word representation. Transformation of the FV by power and L2 normalizations has been shown to significantly improve its performance. With these normalizations included, this representation has yielded state-of-the-art results for a wide number of image and video classification and retrieval tasks. The normalizations, however, render the representation non-additive over local descriptors. Combined with its high dimensionality, this makes the FV computationally very expensive for the purpose of localization tasks. In this paper we, first, present approximations to both these normalizations, which yield significant improvements in the memory requirements and computational costs of the FV when used for localization. Second, we show how these approximations can be used to define upper-bounds on the score function that can be efficiently evaluated, which paves the way for the use of branch-and-bound search as an alternative to exhaustive scanning window search. We present experimental evaluation results on classification and temporal localization of actions in videos. These show that the proposed approximations lead to speed-ups of at least one order of magnitude, while maintaining state-of-the-art action localization performance

    Learning to track for spatio-temporal action localization

    Get PDF
    We propose an effective approach for spatio-temporal action localization in realistic videos. The approach first detects proposals at the frame-level and scores them with a combination of static and motion CNN features. It then tracks high-scoring proposals throughout the video using a tracking-by-detection approach. Our tracker relies simultaneously on instance-level and class-level detectors. The tracks are scored using a spatio-temporal motion histogram, a descriptor at the track level, in combination with the CNN features. Finally, we perform temporal localization of the action using a sliding-window approach at the track level. We present experimental results for spatio-temporal localization on the UCF-Sports, J-HMDB and UCF-101 action localization datasets, where our approach outperforms the state of the art with a margin of 15%, 7% and 12% respectively in mAP

    The THUMOS Challenge on Action Recognition for Videos "in the Wild"

    Get PDF
    Automatically recognizing and localizing wide ranges of human actions has crucial importance for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include `background videos' which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013--2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges.Comment: Preprint submitted to Computer Vision and Image Understandin

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150

    Action Recognition by Hierarchical Mid-level Action Elements

    Full text link
    Realistic videos of human actions exhibit rich spatiotemporal structures at multiple levels of granularity: an action can always be decomposed into multiple finer-grained elements in both space and time. To capture this intuition, we propose to represent videos by a hierarchy of mid-level action elements (MAEs), where each MAE corresponds to an action-related spatiotemporal segment in the video. We introduce an unsupervised method to generate this representation from videos. Our method is capable of distinguishing action-related segments from background segments and representing actions at multiple spatiotemporal resolutions. Given a set of spatiotemporal segments generated from the training data, we introduce a discriminative clustering algorithm that automatically discovers MAEs at multiple levels of granularity. We develop structured models that capture a rich set of spatial, temporal and hierarchical relations among the segments, where the action label and multiple levels of MAE labels are jointly inferred. The proposed model achieves state-of-the-art performance in multiple action recognition benchmarks. Moreover, we demonstrate the effectiveness of our model in real-world applications such as action recognition in large-scale untrimmed videos and action parsing
    • …
    corecore