76 research outputs found

    Efficient, Blind, Spatially-Variant Deblurring for Shaken Images

    Get PDF
    International audienceIn this chapter we discuss modeling and removing spatially-variant blur from photographs. We describe a compact global parameterization of camera shake blur, based on the 3D rotation of the camera during the exposure. Our model uses three-parameter homographies to connect camera motion to image motion and, by assigning weights to a set of these homographies, can be seen as a generalization of the standard, spatially-invariant convolutional model of image blur. As such we show how existing algorithms, designed for spatially-invariant deblurring, can be "upgraded" in a straightforward manner to handle spatially-variant blur instead. We demonstrate this with algorithms working on real images, showing results for blind estimation of blur parameters from single images, followed by non-blind image restoration using these parameters. Finally, we introduce an efficient approximation to the global model, which significantly reduces the computational cost of modeling the spatially-variant blur. By approximating the blur as locally-uniform, we can take advantage of fast Fourier-domain convolution and deconvolution, reducing the time required for blind deblurring by an order of magnitude

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation By Use Of Convolutional Neural Networks

    Full text link
    We present a semi-blind, spatially-variant deconvolution technique aimed at optical microscopy that combines a local estimation step of the point spread function (PSF) and deconvolution using a spatially variant, regularized Richardson-Lucy algorithm. To find the local PSF map in a computationally tractable way, we train a convolutional neural network to perform regression of an optical parametric model on synthetically blurred image patches. We deconvolved both synthetic and experimentally-acquired data, and achieved an improvement of image SNR of 1.00 dB on average, compared to other deconvolution algorithms.Comment: 2018/02/11: submitted to IEEE ICIP 2018 - 2018/05/04: accepted to IEEE ICIP 201

    Joint Blind Motion Deblurring and Depth Estimation of Light Field

    Full text link
    Removing camera motion blur from a single light field is a challenging task since it is highly ill-posed inverse problem. The problem becomes even worse when blur kernel varies spatially due to scene depth variation and high-order camera motion. In this paper, we propose a novel algorithm to estimate all blur model variables jointly, including latent sub-aperture image, camera motion, and scene depth from the blurred 4D light field. Exploiting multi-view nature of a light field relieves the inverse property of the optimization by utilizing strong depth cues and multi-view blur observation. The proposed joint estimation achieves high quality light field deblurring and depth estimation simultaneously under arbitrary 6-DOF camera motion and unconstrained scene depth. Intensive experiment on real and synthetic blurred light field confirms that the proposed algorithm outperforms the state-of-the-art light field deblurring and depth estimation methods

    Efficient non-uniform deblurring based on generalized additive convolution model

    Get PDF
    Image with non-uniform blurring caused by camera shake can be modeled as a linear combination of the homographically transformed versions of the latent sharp image during exposure. Although such a geometrically motivated model can well approximate camera motion poses, deblurring methods in this line usually suffer from the problems of heavy computational demanding or extensive memory cost. In this paper, we develop generalized additive convolution (GAC) model to address these issues. In GAC model, a camera motion trajectory can be decomposed into a set of camera poses, i.e., in-plane translations (slice) or roll rotations (fiber), which can both be formulated as convolution operation. Moreover, we suggest a greedy algorithm to decompose a camera motion trajectory into a more compact set of slices and fibers, and together with the efficient convolution computation via fast Fourier transform (FFT), the proposed GAC models concurrently overcome the difficulties of computational cost and memory burden, leading to efficient GAC-based deblurring methods. Besides, by incorporating group sparsity of the pose weight matrix into slice GAC, the non-uniform deblurring method naturally approaches toward the uniform blind deconvolution.Department of Computin

    Motion Deblurring in the Wild

    Full text link
    The task of image deblurring is a very ill-posed problem as both the image and the blur are unknown. Moreover, when pictures are taken in the wild, this task becomes even more challenging due to the blur varying spatially and the occlusions between the object. Due to the complexity of the general image model we propose a novel convolutional network architecture which directly generates the sharp image.This network is built in three stages, and exploits the benefits of pyramid schemes often used in blind deconvolution. One of the main difficulties in training such a network is to design a suitable dataset. While useful data can be obtained by synthetically blurring a collection of images, more realistic data must be collected in the wild. To obtain such data we use a high frame rate video camera and keep one frame as the sharp image and frame average as the corresponding blurred image. We show that this realistic dataset is key in achieving state-of-the-art performance and dealing with occlusions
    corecore