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1 Efficient, Blind, Spatially-Variant
Deblurring for Shaken Images

Oliver Whyte, Josef Sivic, Andrew Zisserman and Jean Ponce

Abstract

In this chapter we discuss modeling and removing spatially-variant blur from

photographs. We describe a compact global parameterization of camera shake

blur, based on the 3D rotation of the camera during the exposure. Our model

uses three-parameter homographies to connect camera motion to image motion

and, by assigning weights to a set of these homographies, can be seen as a gener-

alization of the standard, spatially-invariant convolutional model of image blur.

As such we show how existing algorithms, designed for spatially-invariant deblur-

ring, can be “upgraded” in a straightforward manner to handle spatially-variant

blur instead. We demonstrate this with algorithms working on real images, show-

ing results for blind estimation of blur parameters from single images, followed

by non-blind image restoration using these parameters. Finally, we introduce

an efficient approximation to the global model, which significantly reduces the

computational cost of modeling the spatially-variant blur. By approximating the

blur as locally-uniform, we can take advantage of fast Fourier-domain convolu-

tion and deconvolution, reducing the time required for blind deblurring by an

order of magnitude.

1.1 Introduction

Everybody is familiar with camera shake, since the resulting blur spoils many

photos taken in low-light conditions. Camera shake blur is caused by motion of

the camera during the exposure; while the shutter is open, the camera passes

through a sequence of different poses, each of which gives a different view of

the scene. The sensor accumulates all of these views, summing them up to form

the recorded image, which is blurred as a result. We would like to be able to

deblur such images to recover the underlying sharp image, which we would have

captured if the camera had not moved.

In general, the problem of restoring an image after it has suffered some degra-

dation can be broken down into three stages: first, a generative model is needed

to relate the undegraded, “ideal” or latent image (that we would like to recover)

to the observed image produced by the camera. Second, the parameters of this
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model must be estimated, and finally the restored image can be reconstructed,

given the model and the estimated parameters.

This chapter is principally concerned with the first of these stages: a geomet-

rically motivated model of spatially-variant image blur due to camera shake,

which we show can be (mostly) attributed to the rotation of the camera during

exposure. We develop a global descriptor for the generative model parameters

of this non-uniform blur, analogous to (but different from) a convolution kernel,

and show that a more general class of blurs can be modelled than uniform.

Several authors have proposed models for spatially-variant blur, under different

assumptions about the scene and the camera, e.g. simple scene models with un-

constrained camera motion (Joshi, Kang, Zitnick & Szeliski 2010, Gupta, Joshi,

Zitnick, Cohen & Curless 2010, Tai, Tan & Brown 2011), constrained camera

motion (Sawchuk 1974, Klein & Drummond 2005, Shan, Xiong & Jia 2007, Tai,

Kong, Lin & Shin 2010), or more complex scene models (Šorel & Flusser 2008, Xu

& Jia 2012). On the other hand, much of the work on algorithms for deblurring

camera shake assume that the blurred image is simply a 2D convolution of a

sharp image with a spatially-invariant filter (Fergus, Singh, Hertzmann, Roweis

& Freeman 2006, Shan, Jia & Agarwala 2008, Cho & Lee 2009), despite the fact

that real camera shake does not, in general, cause spatially-invariant blur (Levin,

Weiss, Durand & Freeman 2009), as shown in Figure 1.1. In this chapter we aim

to bridge this gap, with a practical model for spatially-variant camera shake blur

that can also leverage advances in convolution-based deblurring algorithms.

We begin in Section 1.2 by deriving our geometric model, before discussing

how it can be implemented in practice in Section 1.3. In Section 1.4 we show how

our model can replace convolution in existing deblurring algorithms, with mini-

mal algorithmic changes. In Section 1.5 we describe an efficient approximation to

the model, which significantly reduces its computational cost. In Section 1.6 we

present results on real images, using our model to replace the uniform (convolu-

tion) blur model in an existing algorithm for camera shake removal. In Section 1.7

we cover some implementation considerations for our model.

Parts of this chapter are based on previously-published work (Whyte, Sivic,

Zisserman & Ponce 2010, Whyte, Sivic & Zisserman 2011, Whyte, Sivic, Zisser-

man & Ponce 2012).

1.2 Modelling spatially-variant camera shake blur

A camera may move in several different ways, and it is not necessarily obvious

which kinds of motion cause large changes in the view (and hence a large blur),

and which cause relatively small changes. Furthermore, even if the camera’s

motion is fully known for a given photograph, a model is needed to translate this

physical 3D motion into image-domain motion before we can begin to deblur the

photograph.

We begin by considering the relative blurring effect of different camera mo-
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(a) An image blurred by camera shake (b) Deblurred using the estimated blur
descriptor

(c) Estimated global blur
descriptor

(d) Top: Details from
blurred image. Bottom:
corresponding local PSFs

generated by (c)

(e) Details from the
blurred (top) and
deblurred (bottom)

images

Figure 1.1 Modelling non-uniform blur in a shaken image. The blurred image
(a) clearly exhibits blur which is non-uniform, as highlighted at different locations in
the image. Using the model proposed in this work, we can describe this blur using a
single global descriptor (c), which in this case has been estimated from the blurred
image itself, simply by modifying existing algorithms for blind deblurring (see
Section 1.4 for details). Having estimated the blur, the standard Richardson-Lucy
algorithm is used to estimate the sharp image. Close-ups of different parts of the
image (d) show the variation in the shape of the blur, which can be accurately
reproduced using our model, as shown by the local point spread functions generated
from it. As can be seen in the deblurred image in (b) and the close-ups in (e),
different parts of the image, blurred in different ways, can be deblurred to recover a
sharp image. Reproduced from (Whyte et al. 2012) with permission, ©Springer 2012.

tions, and deriving a geometric model for camera shake. In Section 1.3 we develop

this into a practical model for deblurring real images. In this work we limit our

scope to photographs of static scenes, i.e. the blur is solely due to the motion of

the camera.

1.2.1 Components of camera motion

The pose of a camera incorporates two components: position and orientation.

Intuitively, the position tells us where the camera is, while the orientation tells

us which way it is pointing, and both may vary while the camera’s shutter is

open. In this section, we discuss the contribution of each component to the image

blur, and conclude that in most cases of camera shake, the changes in orientation
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(a) Camera translation (b) Camera rotation

Figure 1.2 Blur due to translation or rotation of the camera. In this simplified
example, we consider capturing a blurred image by either (a) translating the camera
through a distance X parallel to the image plane, or (b) rotating the camera through
an angle θ about its optical centre. We consider the scene point P at a distance D

from the camera, whose image is blurred by δ pixels as a result of either of the two
motions. In most cases, for a given blur size δ the rotation θ constitutes a significantly
smaller motion of the photographer’s hands than the translation X (see text for
details). Reproduced from (Whyte et al. 2012) with permission, © Springer 2012.

(rotation) of the camera during exposure have a significantly larger blurring effect

than the changes in position (translation).

Consider the simplified case shown in Figure 1.2 of a scene point P , at a

distance D from the camera, being imaged at the centre of the camera’s retina

/ sensor. During the exposure, the camera moves, and the image of the point

is blurred through a distance δ pixels. In (a) the camera translates through a

distance X parallel to the image plane, while in (b) the camera rotates through

an angle θ about its optical centre. By simple trigonometry, we can see that in

(a) the camera must translate by

X =
δ

F
D, (1.1)

where F is the camera’s focal length, while in (b) the camera must rotate through

an angle

θ = tan−1

(

δ

F

)

. (1.2)

If we make the common assumption that the camera’s focal length F is ap-

proximately equal to the width of the sensor, say 1000 pixels, then to cause a

blur of δ = 10 pixels by translating the camera, we can see from Equation (1.1)

that X = 1
100D. Thus the required translation grows with the subject’s distance
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from the camera, and for a subject just 1metre away, we must move the camera

by X = 1 cm to cause the blur. When photographing a subject 30metres away,

such as a large landmark, we would have to move the camera by 30 cm!

To cause the same amount of blur by rotating the camera, on the other hand,

we can see from Equation (1.2) that we would need to rotate the camera by

θ = tan−1
(

1
100

)

≃ 0.6◦, independent of the subject’s distance from the camera.

To put this in terms of the motion of the photographer’s hands, then for example

if the camera body is 10 cm wide, such a rotation could be caused by moving

one hand just 1mm forwards or backwards relative to the other. Provided the

subject is more than 1metre from the camera, this motion is at least an order

of magnitude smaller than for a translation of the camera causing an equivalent

amount of blur.

In reality, both the position and orientation of the camera vary simultaneously

during the exposure. However, if the camera only undergoes small changes in

position (translations), then following the discussion above, we can assert that

the variations in the camera’s orientation (rotations) are the only significant

cause of blur.

From now on, we assume that the translational component of camera motion

does not cause any blur. Furthermore, we assume that all rotations occur about

the camera’s optical centre. Note, however, that a camera rotation about a centre

that is not the optical centre can be written as a rotation about the optical

centre composed with a translation; these translations will generally be small if

the centre of rotation is not far from the optical centre. As we shall see in the

following section, this model of camera motion leads to spatially-variant blur.

1.2.2 Motion blur and homographies

Under a pinhole camera model, and assuming that the scene being photographed

is static, rotations of a camera about its optical centre induce projective trans-

formations of the image being observed. In other words, the image observed at

one camera orientation is related to the image at any other by a 2D projective

transformation, or homography. For an uncalibrated camera, this is a general

8-parameter homography, but for a camera with known internal parameters, the

homography H is specified by three parameters and is given by

H = KRK−1, (1.3)

where the 3× 3 matrix R is a rotation matrix describing the orientation of the

camera, and K is the camera’s internal calibration matrix (Hartley & Zisserman

2004). In this work, we assume that the calibration matrix K is known (see

Section 1.2.3).

The rotation matrix R has only three parameters. We adopt here the “angle-

axis” parameterisation, in which a rotation is described by the angle θ moved

about an axis a (a unit-norm 3-vector). This can be summarised in a single
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Y

X

Z

(a) Orientation of camera axes (b) Y -axis rotation of the camera

(c) Z-axis rotation of the camera (d) Arbitrary sequence of rotations

Figure 1.3 Our coordinate frame with respect to initial camera orientation,

and the paths followed by image points under different camera rotations.

We define our coordinate frame (a) to have its origin at the camera’s optical centre,
with the X and Y axes aligned with those of the camera’s sensor, and the Z axis
parallel to the camera’s optical axis. Under single-axis rotations of the camera, for
example about its Y -axis (b), or its Z-axis (c), the paths traced by points in the
image are visibly curved and non-uniform across the image. This non-uniformity
remains true for general camera shakes (d), which do not follow such simple
single-axis rotations, but rather take arbitrary paths through camera pose space. The
focal length of the camera in this simulation is equal to the width of the image, the
principal point is at the image’s centre, and the pixels are assumed to be square.
Reproduced from (Whyte et al. 2012) with permission, © Springer 2012.

3-vector θ = θa = (θX , θY , θZ). R is then given by the matrix exponential

Rθ = e[θ]× , where (1.4)

[θ]× =





0 −θZ θY
θZ 0 −θX

−θY θX 0



 . (1.5)

We fix our 3D coordinate frame to have its origin at the camera’s optical centre.

The axes are aligned with the camera’s initial orientation, such that the XY -

plane is aligned with the camera sensor’s coordinate frame and the Z-axis is

parallel to the camera’s optical axis, as shown in Figure 1.3 (a). In this configu-

ration, θX describes the “pitch” of the camera, θY the “yaw”, and θZ the “roll”,

or in-plane rotation, of the camera.

Having defined the type of image transformations we expect to occur while the

shutter is open, we can write out the image degradation model. Let T denote the

exposure time of the photograph. While the shutter is open, the camera passes

through a sequence of orientations θt, t ∈ [0, T ]. As discussed above, at each
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pose θt, the sensor is exposed to a projectively transformed version of the sharp

image f , where the projective transformation Ht is given by Equations (1.3)

to (1.5). The noiseless blurred image g∗ is then modelled as the integral over the

exposure time T of all the transformed versions of f :

g∗(x) =

∫ T

0

f
(

Htx
)

dt, (1.6)

where, with a slight abuse of notation, we use g∗(x) to denote the value of g∗ at

the 2D image point represented by the homogeneous vector x, and similarly for

f .

Under this model, the apparent motion of scene points may vary significantly

across the image. Figure 1.3 demonstrates this, showing the paths followed by

points in an image under a Y -axis rotation, a Z-axis rotation, or an arbitrary

sequence of rotations of the camera. Under the (in-plane) Z-axis rotation, the

paths vary significantly across the image. Under the (out-of-plane) rotation about

the Y -axis, the paths, while varying considerably less, are still non-uniform. It

should be noted that the degree of non-uniformity of this out-of-plane motion

is dependent on the focal length of the camera, decreasing as the focal length

increases. However, it is typical for consumer cameras to have focal lengths of

the same order as their sensor width, as is the case in Figure 1.3. In addition, it is

common for camera shake to include an in-plane rotational motion. From this, it

is clear that modelling camera shake as a convolution with a spatially-invariant

kernel is insufficient to fully describe its effects (see also Figure 1.1).

In general, a blurred image has no temporal information associated with it, so

it is convenient to replace the temporal integral in Equation (1.6) by a weighted

integral over a set of camera orientations:

g∗(x) =

∫

f
(

Hθx
)

w(θ) dθ, (1.7)

where the weight function w(θ) encodes the camera’s trajectory in a time-

agnostic fashion. The weight will be zero everywhere except along the camera’s

trajectory, and the value of the function at a point θ along the trajectory corre-

sponds to the duration the camera spent at the orientation θ.

1.2.3 Camera calibration

In order to compute the homography in Equation (1.3) that is induced by a

particular rotation of the camera, we need to know the camera’s calibration

matrix K. For the results shown in this chapter, we assume that K takes the

standard form

K =





F 0 x0

0 F y0
0 0 1



 . (1.8)
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This corresponds to a camera whose sensor has square pixels, and whose optical

axis intersects the sensor at (x0, y0), referred to as the principal point. We recover

the focal length of the camera from the image’s EXIF tags, and assume that the

principal point is at the centre of the image (which is typically sufficient for

modelling homographies caused by camera rotations (Szeliski 2004)).

The radial distortion present in many digital cameras can represent a signifi-

cant deviation from the pinhole camera model. Rather than modelling the distor-

tion explicitly, we pre-process images with the commercially available PTLens

software1 to remove it. A second distortion present in many digital images comes

from a non-linear intensity mapping applied by the camera storing the image,

sometimes referred to as “gamma correction”. In this work, we either use raw

camera output images which do not have this non-linearity, or preprocess the

blurred images with the inverse mapping.

1.2.4 Uniform blur as a special case

One consequence of our model for camera shake is that it includes spatially-

invariant blur as a special case, and thus gives the conditions under which such a

blur model is applicable. Given the definitions of R, K and H in Equations (1.3),

(1.4) and (1.8), and assuming θZ = 0, it can be shown (Whyte 2012) that for

small θX , θY , as F → ∞,

Hθ →





1 0 FθY
0 1 −FθX
0 0 1



 , (1.9)

which simply amounts to a translation of the image. Thus we can see that if

the focal length of the camera is large (e.g. if the camera is zoomed-in) and

there is no in-plane rotation, the blur which results from camera motion will be

approximately spatially-invariant.

1.3 The computational model

Real cameras are equipped with a discrete set of pixels, and output a discrete

set of samples of the degraded image, denoted by the vector g ∈ R
N
+ , where N =

H ×W pixels for an image with H rows and W columns. We consider the sharp

image also to be discrete: f ∈ R
N
+ . We use i to index into the degraded image g,

i.e. gi = g(xi), where xi is the coordinate of the ith pixel. Likewise, we use j to

index into the sharp image f , such that fj = f(x′

j) for a coordinate x
′

j . Finally, we

note that to evaluate an image at arbitrary (sub-pixel) locations, we interpolate

from nearby pixels. In this work, we use bilinear interpolation, whereby sub-pixel

values of an image, say g(x) are interpolated as a linear combination of the four

nearest pixels.

1 http://epaperpress.com/ptlens/
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In this discrete setting, we write the blurred image as a linear function of the

sharp image:

g∗i =
∑

j

Aijfj , (1.10)

or in matrix-vector notation, g∗ = Af , (1.11)

where the N ×N matrix A captures the discrete point spread function (PSF).

Each row of the matrix A corresponds to a single blurred pixel in g, and captures

the fact that each blurred pixel is a weighted sum of multiple sharp pixels. In

most cases of blur, the light received by each pixel in g comes from a relatively

small number of nearby pixels in f . As a result, the PSF matrix A for an image

is usually sparse (contains a relatively small number of non-zero values).

We discretise the camera orientation space into a 3D volumetric grid of size

NX×NY ×NZ , and assign each orientation θ
(k) a weight wk, for k ∈ {1, . . . ,K},

where K = NXNY NZ . The set of weights w forms a global descriptor for the

camera shake blur in an image, and by analogy with convolutional blur, we refer

to w as the blur kernel.

Figure 1.1 (c) shows a visualisation of w, where the cuboidal volume of size

NX×NY ×NZ is shown, with the points inside representing the non-zero elements

of w in 3D. The kernel has also been projected onto the three back faces of the

cuboid to aid visualisation, with white corresponding to a large value, and black

corresponding to zero.

Each element wk corresponds to a camera orientation θ
(k), and consequently

to a homography Hk, so that in the discrete setting, the blurred image g∗ is

modelled as a weighted sum of a set of projectively-transformed versions of f :

g∗ =
∑

k

wkT
(k)f , (1.12)

where T(k) is the N × N matrix which applies homography Hk to the sharp

image f . The matrix T(k) is very sparse. For example, if bilinear interpolation

is used when transforming the image, each row has only four non-zero elements

corresponding to the interpolation weights for each pixel. By writing out Equa-

tion (1.12) for a single pixel, we obtain the discrete analog of Equation (1.7):

g∗i =
∑

k

wk

(

∑

j

T
(k)
ij fj

)

, (1.13)

where i and j index the pixels of the blurred image and the sharp image, re-

spectively. For a blurred pixel g∗i with coordinate vector xi, the sum
∑

j T
(k)
ij fj

interpolates the value of the sub-pixel location f(Hkxi). We will return to how

Hk, and the corresponding matrices T(k), are sampled in Section 1.7.

Due to the bilinear form of Equation (1.13), note that when either the blur

kernel or the sharp image is known, the blurred image is linear in the remaining
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unknowns, i.e.

given w, g∗ = Af , where Aij =
∑

k

T
(k)
ij wk, (1.14)

given f , g∗ = Bw, where Bik =
∑

j

T
(k)
ij fj . (1.15)

In the first form, A ∈ R
N×N is a large sparse matrix, whose rows each contain a

local blur filter acting on f to generate a blurred pixel. In the second form, when

the sharp image is known, each column of B ∈ R
N×K contains a projectively

transformed copy of the sharp image. We will use each of these forms in the

following sections.

In contrast to this model, when the PSF is spatially-invariant, we denote the

discrete convolution kernel by a, and write

g∗ = a ∗ f . (1.16)

1.4 Blind estimation of blur from a single image

In this section, we demonstrate the effectiveness of the spatially-variant blur

model presented in Section 1.3 by using it for blind deblurring of images acquired

under camera shake. We consider single-image deblurring, where only a blurred

image is available, and use our model to replace the spatially-invariant blur

model in an existing algorithm for blind deblurring; specifically, applying our

model within the algorithm proposed by Cho & Lee (2009).

“Blind” estimation of PSFs directly from images has a long history (Gull &

Skilling 1984, Ayers & Dainty 1988, Fish, Brinicombe, Pike & Walker 1995),

however the particular case of camera-shake blur has attracted significant atten-

tion recently (Fergus et al. 2006, Shan et al. 2008, Cai, Ji, Liu & Shen 2009, Cho

& Lee 2009, Levin et al. 2009, Xu & Jia 2010, Gupta et al. 2010, Harmeling,

Hirsch & Schölkopf 2010, Krishnan, Tay & Fergus 2011).

The method of Cho & Lee (2009) is similar in spirit to many other MAP-

type algorithms recently proposed (Shan et al. 2008, Cai et al. 2009, Xu & Jia

2010, Krishnan et al. 2011), and proceeds by alternately updating the blur kernel

and latent image, in a multi-scale framework. The algorithm iterates over three

main steps. In the first step, a set of non-linear filters are applied to the current

estimate f̂ of the sharp image, in order to predict the locations and magnitudes

of step edges in the sharp image. This is done using a bilateral filter (Tomasi &

Manduchi 1998) to denoise the image, followed by a shock filter (Osher & Rudin

1990) to enhance sharp edges, producing an image f̂ ′. Finally, the derivatives of

f̂ ′ are computed, and thresholded based on their orientation and magnitude, to

produce a set of sparse edge maps {p(q)}.
In the second step, these predicted edges are used to estimate the blur kernel by

solving a linear least-squares problem. Having found the kernel â that minimises
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this problem, any elements whose value are below a threshold are set to zero. This

encourages sparsity in the kernel, and ensures that all the elements are positive.

In the third step the sharp image is estimated, using the current estimate of the

blur kernel â to deconvolve the blurred image and obtain an improved estimate

of the sharp image f̂ . This step is also performed by solving a linear least-squares

problem.

These three steps are applied iteratively, working from coarse to fine in a

multi-scale framework. The iterative process generally converges quickly at each

scale, and 5-7 iterations are typically sufficient. The kernel-update and image-

update sub-problems involved in the algorithm of Cho & Lee (2009) are linear

least-squares by virtue of the fact that convolution is a bilinear operation on

the sharp image and the blur kernel. The fact that our blur model, given in

Equation (1.13) is bilinear in the sharp image and blur kernel is the key feature

that allows it to be applied within this, and other deblurring algorithms.

Although we have chosen the algorithm of Cho & Lee (2009) to apply our

blur model, we note that many MAP-style blind deblurring algorithms consist

of the same basic blocks, alternating between updating the kernel and the la-

tent image by solving linear least-squares sub-problems, often in a multi-scale

framework (Shan et al. 2008, Xu & Jia 2010, Krishnan et al. 2011). As such, the

following discussion can apply equally well to a number of algorithms.

1.4.1 Updating the blur kernel

The general form of the spatially-invariant kernel update problem (the second

step) in the algorithm of Cho & Lee (2009) is

min
a

∥

∥a ∗ f − g
∥

∥

2

2
+ β ‖a‖22 , (1.17)

where the first data reconstruction term measures how well the blur kernel a

applied to the current estimate of the latent image f reconstructs the observed

blurred image g, and the second term, weighted by a scalar parameter β, is the ℓ2
regularisation of the blur kernel a. Note that in Cho & Lee’s (2009) formulation,

the data term replaces f with the sparse edge maps p(q) produced by the non-

linear filtering of the current estimate of the latent image f̂ , i.e. has the form
∥

∥a ∗ p(q) − d(q) ∗ g
∥

∥

2

2
, where q indexes over the first and second-order spatial

derivatives, and d(q) are spatial derivative filters.

When applying our spatially-variant blur model, we modify the problem given

by Equation (1.17) to update the spatially variant kernel w as

min
w

∥

∥Bw − g
∥

∥

2

2
+ β

∑

k

wk, s.t. ∀k wk ≥ 0, (1.18)

where B is given by Equation (1.15). Here we have substituted our blur model

into the data-reconstruction term, and replaced the ℓ2 Tykhonov regularisa-

tion with ℓ1 regularisation and non-negativity constraints on the kernel. Now,
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instead of simply a linear least-squares problem to update w, we have an in-

stance of the Lasso problem (Tibshirani 1996), for which efficient optimisation

algorithms exist (Efron, Hastie, Johnstone & Tibshirani 2004, Kim, Koh, Lustig,

Boyd & Gorinevsky 2007, Mairal, Bach, Ponce & Sapiro 2010). Similarly to (Cho

& Lee 2009) we use sparse edge maps p(q) which results, after expanding B us-

ing Equation (1.15), in a data term of the form
∥

∥

∑

k wkT
(k)p(q) − d(q) ∗ g

∥

∥

2

2
.

The need for the ℓ1 (instead of the simpler ℓ2) regularisation arises from the

differences between our kernel and convolution kernels. Fundamentally, our ker-

nels cover a larger space of image transformations than convolution kernels (3-

parameter homographies instead of 2D image translations), and we must estimate

more parameters from the same amount of data. As a result, the PSF estimation

process is liable to become poorly conditioned, due to an increased amount of

ambiguity in the data-reconstruction term. We have observed that when sim-

ply replacing the convolution in Equation (1.17) with our model, but without

changing the regularisation, the resulting 3D kernels contain many non-zeros

spread smoothly throughout, and do not produce good deblurred outputs (see

Figure 1.5). On the other hand, with ℓ1 regularisation, the optimisation is more

likely to choose between ambiguous camera orientations than spreading non-zero

values across all of them. In the remainder of the chapter, we refer to the original

algorithm of Cho & Lee as MAP-ℓ2, and our ℓ1 regularised version as MAP-ℓ1.

In addition to the use of ℓ1 regularisation, we note that in order to constrain

the 3D kernel adequately, we require data from all regions of the image. This can

be seen by considering a vertical blur at the left or right-hand side of the image.

Such a blur could be explained either by a rotation of the camera about its X

axis, or a rotation about its Z axis. In order to resolve this ambiguity, we would

need to look at other regions of the image. To ensure that we use observations

from all parts of the image when updating the kernel, we modify the construction

of the edge-maps p(q) from the filtered sharp image f̂ ′. We simply subdivide the

image into 3×3 regions, and apply the gradient thresholding step independently

on each.

1.4.2 Updating the latent image

The latent image update (the third step) in the algorithm of Cho & Lee (2009)

is performed in a similar way to many non-blind deblurring algorithms (Xu &

Jia 2010, Krishnan & Fergus 2009) by solving a linear least-squares problem of

the form

min
f

‖a ∗ f − g‖22 + α ‖dx ∗ f‖22 + α ‖dy ∗ f‖22 , (1.19)

where dx and dy represent horizontal and vertical derivative filters, and α is a

regularisation weight. Note that in Cho & Lee’s (2009) formulation, the data term

also takes into account the derivatives of f and g as well as the intensities (i.e.
∥

∥a ∗ (d(q) ∗ f)− d(q) ∗ g
∥

∥

2

2
is also penalised, for various derivative filters d(q)).
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To apply our blur model, we simply replace the convolution in the data recon-

struction term and update the latent image as

min
f

∥

∥Af − g
∥

∥

2

2
+ α ‖dx ∗ f‖22 + α ‖dy ∗ f‖22 , (1.20)

whereA is given by Equation (1.14). We minimise Equation (1.20) using conjugate-

gradient descent (Shewchuk 1994).

Note that at this point, we are not able to take full advantage of the speed op-

timisations proposed by Cho & Lee (2009), due to their use of Fourier transforms

to compute convolutions and to perform direct minimisation of Equation (1.19)

in the frequency domain. However, in the following section we will describe an

efficient approximation of the spatially-variant blur model which enables this.

1.5 Efficient computation of the spatially-variant model

Due to the additional computational expense incurred by using a spatially-

variant blur model instead of a spatially-invariant one, both blind and non-blind

deblurring under this model can be very time consuming. As seen in the pre-

vious section, MAP-type deblurring algorithms typically involve solving linear

least-squares problems, minimising ‖Af − g‖22 with respect to f , and ‖Bw − g‖22
with respect to to w. As defined in Equations (1.14) and (1.15), the matrices A

and B involve sums over a set of homographies {T(k)}, where the size K of the

set can be large, on the order of hundreds or thousands.

In iterative minimisation algorithms for solving such least-squares problems,

we must repeatedly compute arbitrary matrix-vector multiplications involving

A and B. For images with millions of pixels these matrices are generally too

large to fit into memory, and the matrix-vector products must be computed

on-the-fly, by explicitly warping the image for each homography T(k). This is

by far the biggest bottleneck in the use of our model, and means that both

blind PSF estimation and non-blind deblurring are significantly slower than for

spatially-invariant blur.

To reduce the running time of the whole deblurring process, in this section

we propose an efficient approximation to the blur model from Equation (1.12),

based on the locally-uniform “Efficient Filter Flow” proposed by Hirsch, Sra,

Schölkopf & Harmeling (2010). We begin by describing the approximation in

Section 1.5.1, before demonstrating in Section 1.5.2 how it can be used to com-

pute the matrix-vector products necessary for the kernel update step (Equa-

tion (1.18)) very quickly. In Section 1.5.3 we describe how this approach allows

us to update the sharp image (Equation (1.20)) directly in the frequency domain

(instead of using iterative methods). The approximation allows blind deblurring

to be performed an order of magnitude faster than when using the exact for-

ward model. Note that concurrently with our work, Hirsch, Schuler, Harmeling

& Schölkopf (2011) proposed a similar model for efficiently computing spatially-

variant camera-shake blur.
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1.5.1 A locally-uniform approximation for camera shake

Hirsch et al. (2010) observe that in some cases of spatially-variant image blur,

the blur may vary slowly and smoothly across the image. In these cases, it is

reasonable to approximate spatially-variant blur as locally-uniform. Following

this observation, they propose a model for spatially-variant blur, whereby the

sharp image f is covered with a coarse grid of P overlapping patches, each of

which is modelled as having a spatially-invariant blur. The overlapping patches

ensure the blur varies smoothly, while allowing the forward model to be computed

using P small convolutions. Hirsch et al. (2010) assign each patch r a spatially-

invariant blur filter a(r), and their model is given by:

g∗ =

P
∑

r=1

C(r)⊤
(

a(r) ∗
(

m ◦C(r)f
)

)

, (1.21)

where C(r) is a matrix that crops the rth patch of the image f (thus C(r)⊤

reinserts it via zero-padding). The vector m is the Bartlett-Hann window, and

· ◦ · represents the Hadamard (element-wise) product. Note that this model

can be computed very efficiently by computing the discrete Fourier transforms

of each patch and filter using the fast Fourier transform (FFT), multiplying

them element-wise in the frequency domain, and then taking the inverse discrete

Fourier transform of the result. Under varying assumptions, different authors

have also proposed locally-uniform models of spatially-variant blur, which take

similar forms to Equation (1.21) (Nagy & O’Leary 1998, Vio, Nagy, Tenorio &

Wamsteker 2005, Tai, Du, Brown & Lin 2010).

In their original work, Hirsch et al. (2010) parameterise the blur using a sep-

arate filter a(r) for each patch r. Likewise Harmeling et al. (2010), who apply

this model to single-image camera shake removal, also estimate a separate filter

per patch using the MAP algorithm of Cho & Lee (2009). One weakness of this

approach is that in textureless regions, the algorithm of Cho & Lee may fail, and

so heuristics are needed to encourage similarity between neighbouring filters, and

also to detect and replace failed local kernel estimates.

Given the forward blur model for camera shake in Equation (1.12), which is

parameterised by a single set of weights w, we can in fact write each a(r) in terms

of w. For each patch r, we choose a(r) to be the point spread function for the

central pixel ir, which is given by the ithr row of A. Since A is linear in w, we can

construct a matrix J(r) such that a(r) = C(r)J(r)w. The elements of each J(r)

are simply a re-arrangement of the elements of the matrices T(k); J
(r)
jk = T

(k)
irj

.

Having written each filter a(r) in terms of w, we can then substitute this into

Equation (1.21) to obtain the following approximation of the forward model from

Equation (1.12):

g∗ = Af = Bw ≃
P
∑

r=1

C(r)⊤
(

(

C(r)J(r)w
)

∗
(

m ◦C(r)f
)

)

. (1.22)
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This equation allows the forward model to be computed quickly using only a

handful of small convolutions, which can be performed efficiently in the frequency

domain. Figure 1.4 shows how the quality of the locally uniform approximation

varies with the number of patches being used, compared to the exact model. In

all our experiments, we use a grid of 6× 8 patches.

1.5.2 Updating the blur kernel

In iterative algorithms for estimating the blur kernel w from Equation (1.18), we

typically need to compute the gradient of ‖Bw − g‖22 with respect to w, which

involves computing B⊤y for arbitrary y and B⊤B. In addition to being able

to compute the forward model quickly, Equation (1.22) provides us with a fast

approximate way of computing these products using one convolution per patch:

B⊤y ≃
P
∑

r=1

J(r)⊤C(r)⊤
(

(

m ◦C(r)f
)

⊗
(

C(r)y
)

)

(1.23)

B⊤B ≃
P
∑

r=1

J(r)⊤C(r)⊤ XCorrMatrix
(

(

m ◦C(r)f
)

⊗
(

C(r)f
)

)

C(r)J(r), (1.24)

where · ⊗ · represents 2D correlation, and the function XCorrMatrix constructs

the full cross-correlation matrix from a cross-correlation vector between two

signals by replicating and shifting elements. A cross-correlation matrix M for

a pair of signals u and v stores their inner-product at all possible translations

of both signals. Assuming appropriate boundary conditions, each row of M is

simply a shifted version of the cross-correlation u⊗ v.

1.5.3 Updating the latent image: fast, non-iterative non-blind deconvolution

The locally-uniform approximation allows the forward model and its derivatives

to be computed much faster using the FFT, such that we can quickly compute

the A⊤y and A⊤A products needed to perform gradient-based optimisation of

the sharp image in Equation (1.20). However, for spatially-invariant blur, the

fastest way of updating the sharp image (in Equation (1.19)) is not using itera-

tive methods such as conjugate-gradient descent, but rather using non-iterative

frequency-domain deconvolution, which we outline below. In this section we ex-

tend this method to handle spatially-variant blur, via the locally-uniform ap-

proximation.

When blur is spatially-invariant, using Parseval’s theorem, Equation (1.19) can

be transformed into N independent 1D quadratic minimisations in the frequency

domain, allowing the solution to be obtained directly by pixel-wise division in

the frequency domain (Gamelin 2001):

f̂ = F−1

(

F (a)
∗ ◦ F (g)

F (a)
∗ ◦ F (a) + α

(

F (dx)
∗ ◦ F (dx) + F (dy)

∗ ◦ F (dy)
)

)

, (1.25)
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(a) Approx. 3× 4 patches (b) Approx. 6× 8 patches

(c) Approx. 12× 16 patches (d) Exact model

Figure 1.4 Approximating spatially-variant blur by combining

uniformly-blurred, overlapping patches. Using the model described in
Section 1.5.1, we can efficiently compute approximations to the spatially-variant blur
model in Equation (1.12). With a small number of patches (a), the PSF at each pixel
is visibly the sum of different blurs from overlapping patches. As more patches are
used (b–c), the approximation becomes increasingly close to the exact model (d) – at
12× 16 patches it is almost indistinguishable.

where F ( · ) takes the 2D discrete Fourier transform (computed using the fast

Fourier transform), and F−1 ( · ) the inverse Fourier transform.

However, for spatially-variant blur, the locally-uniform approximation does

not immediately permit this. Even though each patch has a spatially-invariant

blur, the fact that the patches overlap means that the reconstruction of any

blurred pixel will involve several patches. This can be seen by inserting the

locally-uniform model into the non-blind deblurring problem in Equation (1.20),

and seeing that the sum over patches lies inside the data-reconstruction term:

min
f

∥

∥

∥

P
∑

r=1

C(r)⊤
(

a(r) ∗ (m ◦C(r)f)
)

− g

∥

∥

∥

2

2
+ α

∥

∥dx ∗ f
∥

∥

2

2
+ α

∥

∥dy ∗ f
∥

∥

2

2
. (1.26)

Thus, this equation cannot be minimised independently for each patch.

In order to be able to estimate each patch independently, one simple solution

is to use Jensen’s inequality to obtain an upper bound on Equation (1.26), taking

the sum over patches outside the data-reconstruction term, and expanding the

regularisation terms to also penalise individual patches. Having done this, we

minimise the upper bound instead of the original cost. We define the set of
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blurred patches {g(r)} and sharp patches {f (r)} such that g(r) = m ◦C(r)g and

f (r) = m ◦C(r)f , and estimate each deblurred patch f̂ (r) by solving

min
f (r)

∥

∥a(r) ∗ f (r) − g(r)
∥

∥

2

2
+ α

∥

∥dx ∗ f (r)
∥

∥

2

2
+ α

∥

∥dy ∗ f (r)
∥

∥

2

2
(1.27)

for each patch. This can be done using the direct frequency-domain method

of Equation (1.25). Second, we estimate the full deblurred image f̂ that best

matches the deblurred patches {f̂ (r)} by minimising
∑P

r=1

∥

∥m ◦ C(r)f − f̂ (r)
∥

∥

2

2
.

This problem can be solved independently for each pixel, yielding the following

solution:

f̂ =

∑

r C
(r)⊤(m ◦ f̂ (r))

∑

r C
(r)⊤(m ◦m)

. (1.28)

In Figure 1.7 we compare this method of non-blind deblurring to other possi-

bilities for solving Equation (1.20) with spatially-variant camera shake blur. The

fast independent method produces results which are visually very similar to those

obtained using the exact model, in a significantly shorter amount of time. Using

this direct deconvolution method to update the latent image via Equation (1.20)

during blind deblurring provides an additional speed improvement, compared to

the use of conjugate-gradient descent with the approximate forward model.

As a demonstration of the speed-up achievable with this approximation, the

examples in Figures 1.5 to 1.7 all took more than 3 hours for blind deblurring

using the exact model (implemented in Matlab and C), compared to under

6 minutes using the approximation presented in this section (implemented in

Matlab). The results shown in this chapter were all produced using the ap-

proximation. The reduction in computational complexity can be quantified by

comparing the exact model in Equation (1.13) with the approximate model in

Equation (1.22). Evaluating Equation (1.13) requires O
(

NK
)

operations, where

N is the number of pixels in the image and K is the number of non-zeros in w,

whereas Equation (1.22) requires O
(

N logN
)

operations (due to the use of the

FFT to compute the convolution). For a camera shake blur, O
(

K
)

≥ O
(√

N
)

,

and thus the approximation provides a significant reduction in computational

complexity. For a complete discussion of the computational complexity, as well

as a full derivation of the equations presented here, please refer to Whyte (2012).

Application to other non-blind deblurring algorithms

The fast, non-iterative method for non-blind deblurring presented in this section

can be used as a building-block in more sophisticated non-blind deblurring algo-

rithms. A number of recent algorithms, which place sparse-gradient priors on the

deblurred image (Krishnan & Fergus 2009, Wang, Yang, Yin & Zhang 2008, Shan

et al. 2008), or which use more robust data-reconstruction terms (Yan, Zhang

& Yin 2009, Xu & Jia 2010), involve solving sub-problems of the form of Equa-

tion (1.19), which has a quadratic data-reconstruction term and quadratic reg-

ularisation. As such, the non-iterative method presented in this section can be
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used to extend these more sophisticated algorithms to handle spatially-variant

blur, without a substantial increase in processing time. The results shown in

Section 1.6 use the algorithm of Krishnan & Fergus (2009), modified in this way,

to perform the final non-blind deblurring.

1.6 Single-image deblurring results

In this section we present results of single-image deblurring using the MAP-

ℓ1 algorithm to estimate the spatially-variant PSF, with comparisons to results

obtained with the original algorithm of Cho & Lee (2009) on real data. Having

estimated the PSF, we apply the non-blind deblurring algorithm of Krishnan

& Fergus (2009) to estimate the final deblurred image. This algorithm is easily

adapted to non-uniform blur since it involves repeated minimisations of quadratic

cost functions similar to Equation (1.20).

Figure 1.5 shows a blind deblurring result on an image blurred by real camera

shake. Our model is able to model and remove the blur, while the results with the

original algorithm contain visible artefacts. This is explained by both the wide

field of view, and the fact that the kernels estimated using our algorithm exhibit

significant in-plane rotation. Also shown is the result of using ℓ2 regularisation on

the spatially-variant kernel. As discussed in Section 1.4.1, the kernel produced

is not sparse, and as a result the deconvolved output exhibits many artefacts

compared to the MAP-ℓ1 result.

Figure 1.6 shows another example of single-image deblurring, using the MAP

algorithm. While the uniform blur kernel provides a reasonable estimate of the

true blur, and allows us to resolve some of the text on the book’s cover, the use of

our non-uniform blur model provides a clear improvement, and permits almost

all of the text to be read.

Additional blind deblurring results of real camera shakes are shown in fig-

ures Figure 1.1 and Figure 1.7.

1.6.1 Limitations and failures

Since the MAP approach to blind deblurring attempts to solve a non-convex

minimisation problem, it is not possible to guarantee a globally optimal solu-

tion. However, in practice we have found the MAP-ℓ1 algorithm to be capable

of deblurring a wide range of images with large blurs – the blurs removed in

this chapter are up to 35 pixels wide (e.g. Figure 1.6) – for both uniform and

non-uniform blur. For our model, this corresponds to around 3◦ – 5◦ of rota-

tion around each axis for a photograph whose width and focal length are both

1000 pixels. This is due in large part to the multi-scale approach; by finding a

sequence of solutions at increasingly fine resolutions, the large scale structures

in the blur kernel and sharp image are resolved before the fine details.

Nevertheless, failures do occur and Figure 1.8 shows an example case. We



Efficient, Blind, Spatially-Variant Deblurring for Shaken Images 19

(a) Blurred image (b) MAP-ℓ2, uniform

(c) MAP-ℓ2, non-uniform (d) MAP-ℓ1, non-uniform

(a) (b) (c) (d)

Figure 1.5 Blind deblurring of real camera shake. A hand-held image with
camera shake (a), captured with a shutter speed of 1 second, with the results of blind
deblurring using the algorithm of Cho & Lee with (b) a uniform blur model and
(c–d) our spatially-varying blur model. The estimated kernels are shown inset in the
deblurred results. The result using our blur model in the MAP-ℓ1 algorithm (d) shows
more detail and fewer artefacts than those using the uniform blur model, as can be
seen in the zoomed-in portions shown in the last row. Also shown is the result when
using our blur model with ℓ2 regularisation on the kernel (c). As can be seen, the ℓ2

regularisation is not sufficient to produce a good estimate of the kernel, and results in
a deblurred output containing many artefacts. The rotational blur kernels in (c–d)
cover ±0.7◦ in θX and θY and ±1.4◦ in θZ .

have observed failures caused by several factors, including a high level of noise

in the input images, an excessively large blur, or an unknown non-linear camera

response function e.g. Figure 1.8 (bottom row). Also, the algorithm may fail

when the edge-based heuristics which guide the blind deblurring do not match
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(a) Blurred image (b) Some local PSFs for (d), magnified

(c) MAP-ℓ2, uniform (d) MAP-ℓ1, non-uniform

Figure 1.6 Blind deblurring of real camera shake. The result of blind deblurring
on a real camera shake image (a), captured with a shutter speed of 1 second, using
the MAP approach of Cho & Lee with both the uniform and non-uniform blur
models. Also shown in (b) are some of the local PSFs generated from the blur kernel
in (d) at various points in the image. In the blurred image, most of the text on the
book cover is too blurred to read. Deblurring the image with the uniform blur
model (c) allows some of the text on the cover of the book to be read, however, after
deblurring with our non-uniform model (d), all but the smallest text becomes legible.
The estimated kernels for the two models are shown inset in the deblurred results.
The blur kernel in (d) covers ±0.4◦ in θX and θY , and ±0.9◦ in θZ . Reproduced
from (Whyte et al. 2012) with permission, © Springer 2012.
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(a) Blurred image & estimated blur
kernel

(b) Conjugate gradient descent
(20 iterations), exact model, 442s

(c) Conjugate gradient descent
(20 iterations), approximate model,

137s

(d) Direct independent
deconvolution of patches, 4s

(a) (b) (c) (d)

Figure 1.7 Least-squares non-blind deblurring using the exact and

approximate forward models. Given a blurred image of size 1024× 768 and blur
kernel (a), this figure shows the results and computation times for least-squares
deconvolution with ℓ2 gradient regularisation, using (b) conjugate-gradient descent
(CG) with the exact forward model, (c) CG with the approximate forward model,
and (d) direct deconvolution using the approach described in Section 1.5.3. The
results are visually similar using all three methods. Using CG with the approximate
forward model is much faster than with the exact model, however the direct approach
takes only a fraction of the time of either of these.

the particular image being estimated, e.g. in an image that contains only fine-

scale texture with no large-scale step edges.

Since we have assumed that camera translation has a negligible blurring effect,
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(a) Blurred image (b) Deblurred result from
MAP-ℓ1 algorithm

(c) Kernel estimated by
MAP-ℓ1 algorithm

Figure 1.8 Blind deblurring failures. A blurred image (a) with the deblurred
result (b) and kernel (c) estimated by the MAP-ℓ1 algorithm. This image contains a
large amount of noise, and was captured with a camera-phone whose response
function is unknown. As a result, the algorithm fails to estimate a good kernel, and
instead returns a kernel which is close to a delta function.

our model (and the uniform model too) is unlikely to produce good results on

images for which this is not true, due to the depth-dependent blur produced. As

discussed in Section 1.2, this is unlikely to be a problem on most shaken images,

except for close-up photos where the subject is less than about 1m from the

camera.

1.7 Implementation

The implementation of the algorithm of Cho & Lee (2009) is our own, and we

use this implementation for both uniform and non-uniform blur models when

comparing results. A binary executable for Cho & Lee’s (2009) algorithm is

available, however we did not observe an improvement in the results obtained,

and thus use our own implementation to permit a fairer comparison between

the results from the uniform and non-uniform blur models. The implementation

of the non-blind deblurring algorithm of Krishnan & Fergus (2009) is based on

Matlab code made available online by the authors2.

Sampling the set of rotations

One important detail to consider is how finely to discretise the orientation param-

eter θ. In the discrete case, each grid point θ(k) corresponds to a transformation

matrix T(k) in the sum in Equation (1.12). Undersampling the space of orien-

tations will affect our ability to accurately reconstruct the blurred image, but

sampling it too finely will lead to unnecessary computation. Since the kernel is

defined over the 3 parameters θX , θY and θZ , doubling the sampling resolution

increases the number of kernel elements by a factor of 8. In practice, we have

found that a good choice of grid spacing is that which corresponds to a maxi-

mum displacement of 1 pixel in the image. Since we are fundamentally limited

2 http://cs.nyu.edu/ dilip/research/fast-deconvolution/
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by the resolution of our images, reducing the spacing further leads to redundant

orientations, which are indistinguishable from their neighbours. We set the size

of the 3D kernel in terms of the size of the blur we are attempting to remove,

typically a few degrees along each dimension of θ, e.g. [−5◦, 5◦].

Multiscale implementation

Most successful blind kernel estimation algorithms here are applied within a

multiscale framework, starting with a coarse representation of image and kernel,

and repeatedly refining the estimated kernel at higher resolutions. In the case of

single-image deblurring, this is essential to avoid poor local minima, however in

our case, it is also important for computational reasons. At the original image

resolution, the kernel may have thousands or tens of thousands of elements,

however very few of these should have non-zero values.

Thus, in all of the applications presented in this chapter, which estimate the

kernel iteratively, we use our current estimate of the kernel ŵs at a scale s to

constrain our estimate at the next iteration. To do this, we define an “active

region” where ŵs is non-zero, and constrain the non-zeros at the next iteration

to lie within this region. By clamping many kernel elements to zero, we eliminate

a large amount of computation and memory requirements associated with esti-

mating those elements’ values. We first build Gaussian pyramids for the blurred

image, and at the coarsest scale s = 0, define the active region to cover the full

kernel. At each iteration, we find the non-zero elements of our current estimate

of the kernel ŵs, and dilate this region using a 3×3×3 cube to define the active

region for the next iteration. When moving from one scale s to the next scale

s + 1, we upsample ŵs using bilinear interpolation, find the non-zero elements

of this upsampled kernel, and as before, dilate this region using a 3 × 3 × 3

cube. This initialises the active region for our next estimate ŵs+1. We repeat

this process at each scale, until we have found the optimal kernel at the finest

scale.

This approach is generally effective at reducing the computational burden of

the kernel estimation without reducing accuracy, however, problems may occur

if the blur kernel contains long faint structures, as it is possible for these to be

clamped to zero at a coarse scale and never to be recovered.

Running time

For a 1024 × 768 image, our C implementation of the exact model in Equa-

tion (1.12) takes approximately 5 seconds to compute, compared to 2 seconds

for our Matlab implementation of the approximate forward model in Equa-

tion (1.22), on an Intel Xeon 2.93GHz CPU.

Our implementation, inMatlab and C, of the MAP-ℓ1 algorithm for spatially-

variant blur takes over 3 hours to deblur a 1 megapixel (1024 × 768) image, de-

pending on the size of the blur. This is a significant departure from the spatially-

invariant algorithm of Cho & Lee (2009), who report deblurring times of under

one minute using their C++ implementation. Using the efficient approximation
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described in Section 1.5, we are able to perform blind deblurring of the same

images, using our spatially-variant blur model in under 6 minutes.

1.8 Conclusion

In this chapter we have proposed a geometrically-derived model for blur caused

by camera shake. For a static scene and a camera with known focal length, we

have shown that the blur caused by camera rotation can be modelled using a

weighted set of homographies, and have proposed a practical formulation of this

model in which the blurred image is bilinear in the sharp image and the weights.

We have applied our model for spatially-variant camera shake blur within an

existing camera shake removal algorithms, and validated the model with experi-

ments demonstrating superior results compared to the spatially-invariant blur

model. We have also described how an efficient approximation for spatially-

variant blur can be used to reduce the computational cost of computing the

spatially-variant forward blur model.

Although we have demonstrated our model only in the algorithm of Cho &

Lee (2009) for blind deblurring, it could equally be used with more recent al-

gorithms, which have shown superior results, such as those of Xu & Jia (2010)

and Krishnan et al. (2011). Equally, faster or more sophisticated methods for

non-blind deblurring, such as those of Afonso, Bioucas-Dias & Figueiredo (2010)

and Zoran & Weiss (2011), could be extended to use our spatially-variant blur

model.

Interested readers can access an online demonstration of the blind deblurring

algorithm at http://www.di.ens.fr/willow/research/deblurring/.
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