293,852 research outputs found

    A Method for High Level Assessment of the Aeronautical Infrastructure Efficiency

    Get PDF
    Purpose: The aim of this article is to analyze the evolution of fuel consumption efficiency of the domestic flights in Brazil along the period 2000-2015 in order understand the overall efficiency of the aeronautical infrastructure in this country. Design/methodology: This article proposes a method for high level assessments of the aeronautical infrastructure efficiency (either on ground or airspace) in a fast and easy to grasp manner, using the key performance indicator of useful distance per flight hour. The method estimates the average flight time spent by the national carriers to accomplish the average stage lengths in each year of the period 2000-2015 and compare these results with the flight time baseline included in the flight planning data of the aircrafts composing the Brazilian commercial aircraft fleet. Findings: This approach leads to huge differences between the referred results and the fuel consumption shown by flight operations manuals and were attributed to the inefficiencies existing in the acknowledged overloaded aeronautical infrastructure (either in the air or on ground) in Brazil. With that it is concluded that there is a potential reduction opportunity of almost 30% in aircraft fuel consumption in domestic flights in Brazil, which has been until the moment almost unconsidered. Thus, government policy-makers and all stakeholders will be able to quantify the impacts and recommend investments in infrastructure in a well-founded way. Furthermore, the return on investments of public funds, which are especially scarce in the developing countries, will be assessed in a simple manner. Under this scope investments and research on Air Traffic Management (ATM) new technologies and flow management techniques are strongly suggested in order to improve airspace operational efficiency. Originality/value: A new and innovative method for high level assessment of the aeronautical infrastructure efficiency.Peer Reviewe

    Analysis of Second-order Statistics Based Semi-blind Channel Estimation in CDMA Channels

    Full text link
    The performance of second order statistics (SOS) based semi-blind channel estimation in long-code DS-CDMA systems is analyzed. The covariance matrix of SOS estimates is obtained in the large system limit, and is used to analyze the large-sample performance of two SOS based semi-blind channel estimation algorithms. A notion of blind estimation efficiency is also defined and is examined via simulation results.Comment: To be presented at the 2005 Conference on Information Sciences and System

    Moment-based Estimation of Mixtures of Regression Models

    Get PDF
    Finite mixtures of regression models provide a flexible modeling framework for many phenomena. Using moment-based estimation of the regression parameters, we develop unbiased estimators with a minimum of assumptions on the mixture components. In particular, only the average regression model for one of the components in the mixture model is needed and no requirements on the distributions. The consistency and asymptotic distribution of the estimators is derived and the proposed method is validated through a series of simulation studies and is shown to be highly accurate. We illustrate the use of the moment-based mixture of regression models with an application to wine quality data.Comment: 17 pages, 3 figure

    Pareto Smoothed Importance Sampling

    Full text link
    Importance weighting is a general way to adjust Monte Carlo integration to account for draws from the wrong distribution, but the resulting estimate can be noisy when the importance ratios have a heavy right tail. This routinely occurs when there are aspects of the target distribution that are not well captured by the approximating distribution, in which case more stable estimates can be obtained by modifying extreme importance ratios. We present a new method for stabilizing importance weights using a generalized Pareto distribution fit to the upper tail of the distribution of the simulated importance ratios. The method, which empirically performs better than existing methods for stabilizing importance sampling estimates, includes stabilized effective sample size estimates, Monte Carlo error estimates and convergence diagnostics.Comment: Major revision: 1) proofs for consistency, finite variance, and asymptotic normality, 2) justification of k<0.7 with theoretical computational complexity analysis, 3) major rewrit

    Network tomography based on 1-D projections

    Full text link
    Network tomography has been regarded as one of the most promising methodologies for performance evaluation and diagnosis of the massive and decentralized Internet. This paper proposes a new estimation approach for solving a class of inverse problems in network tomography, based on marginal distributions of a sequence of one-dimensional linear projections of the observed data. We give a general identifiability result for the proposed method and study the design issue of these one dimensional projections in terms of statistical efficiency. We show that for a simple Gaussian tomography model, there is an optimal set of one-dimensional projections such that the estimator obtained from these projections is asymptotically as efficient as the maximum likelihood estimator based on the joint distribution of the observed data. For practical applications, we carry out simulation studies of the proposed method for two instances of network tomography. The first is for traffic demand tomography using a Gaussian Origin-Destination traffic model with a power relation between its mean and variance, and the second is for network delay tomography where the link delays are to be estimated from the end-to-end path delays. We compare estimators obtained from our method and that obtained from using the joint distribution and other lower dimensional projections, and show that in both cases, the proposed method yields satisfactory results.Comment: Published at http://dx.doi.org/10.1214/074921707000000238 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Concept design of a fast sail assisted feeder container ship

    No full text
    A fast sail assisted feeder container ship concept has been developed for the 2020 container market in the South East Asian and Caribbean regions.The design presented has met the requirements of an initial economic study, with a cargo capacity of 1270 twenty-foot equivalent unit containers, meeting the predictions of container throughput derived from historical data. In determining suitable vessel dimensions, account has also been taken for port and berthing restrictions, and considering hydrodynamic performance. The vessel has been designed for a maximum speed of 25 knots, allowing it to meet the demand for trade whilst reducing the number of ships operating on the routes considered.The design development of the fast feeder concept has involved rigorous analyses in a number of areas to improve the robustness of the final design. Model testing has been key to the development of the concept, by increasing confidence in the final result. This is due to the fact that other analysis techniques are not always appropriate or accurate. Two hull forms have been developed to meet requirements whilst utilising different propulsor combinations. This has enabled evaluation of efficiency gains resulting from different hydrodynamic phenomena for each design. This includes an evaluation of the hydrodynamic performance when utilising the sail system. This has been done using a combination of model test results and data from regression analysis. The final propulsor chosen is a contra-rotating podded drive arrangement. Wind tunnel testing has been used to maximise the performance of a Multi-wing sail system by investigating the effects of wing spacing, stagger and sail-container interactions. This has led to an increase in lift coefficient of 32% from initial predictions. The savings in power requirement due to the sail system are lower than initially predicted. However, another benefit of their installation, motion damping, has been identified. Whilst this has not been fully investigated, additional fuel savings are possible as well as improved seakeeping performance.The design is shown to be environmentally sustainable when compared to existing vessels operating on the proposed routes. This is largely due to the use of low-carbon and zero-sulphur fuel (liquefied natural gas) and improvements in efficiency regarding operation. This especially relates to cargo handling and scheduling. Green house gas emissions have been predicted to fall by 42% and 40% in the two regions should the design be adopted. These savings are also due to the use of the Multi-wing sail system, which contributes to reductions in power requirement of up to 6% when the vessel operates at its lower speed of 15 knots. It is demonstrated that the fast feeder is also economically feasible, with predicted daily cost savings of 27% and 33% in the South East Asian and Caribbean regions respectively. Thus the fast feeder container ship concept is a viable solution for the future of container transhipment. <br/
    corecore