3 research outputs found

    Efficiency of Truthful and Symmetric Mechanisms in One-sided Matching

    Full text link
    We study the efficiency (in terms of social welfare) of truthful and symmetric mechanisms in one-sided matching problems with {\em dichotomous preferences} and {\em normalized von Neumann-Morgenstern preferences}. We are particularly interested in the well-known {\em Random Serial Dictatorship} mechanism. For dichotomous preferences, we first show that truthful, symmetric and optimal mechanisms exist if intractable mechanisms are allowed. We then provide a connection to online bipartite matching. Using this connection, it is possible to design truthful, symmetric and tractable mechanisms that extract 0.69 of the maximum social welfare, which works under assumption that agents are not adversarial. Without this assumption, we show that Random Serial Dictatorship always returns an assignment in which the expected social welfare is at least a third of the maximum social welfare. For normalized von Neumann-Morgenstern preferences, we show that Random Serial Dictatorship always returns an assignment in which the expected social welfare is at least \frac{1}{e}\frac{\nu(\opt)^2}{n}, where \nu(\opt) is the maximum social welfare and nn is the number of both agents and items. On the hardness side, we show that no truthful mechanism can achieve a social welfare better than \frac{\nu(\opt)^2}{n}.Comment: 13 pages, 1 figur

    Social Welfare in One-Sided Matching Mechanisms

    Full text link
    We study the Price of Anarchy of mechanisms for the well-known problem of one-sided matching, or house allocation, with respect to the social welfare objective. We consider both ordinal mechanisms, where agents submit preference lists over the items, and cardinal mechanisms, where agents may submit numerical values for the items being allocated. We present a general lower bound of Ω(n)\Omega(\sqrt{n}) on the Price of Anarchy, which applies to all mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and Random Priority, achieve a matching upper bound. We extend our lower bound to the Price of Stability of a large class of mechanisms that satisfy a common proportionality property, and show stronger bounds on the Price of Anarchy of all deterministic mechanisms
    corecore