2 research outputs found

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently ā€œmedical roboticistsā€ or not

    On the biomechanics of ligaments and muscles throughout the range of hip motion

    Get PDF
    At the limits of the range of hip motion, impingement, subluxation and edge loading can cause osteoarthritis in natural hips or early failure hip replacements. The aim of this PhD was to investigate the role of hip joint soft tissues throughout the range of hip motion to better understand their role in preventing (or perhaps even causing) these problematic load cases. A musculoskeletal model was used to investigate the muscular contribution to edge loading and found that in the mid-range of hip motion, the lines of action of hip muscles pointed inward from the acetabular rim and thus would stabilise the hip. However, in deep hip flexion with adduction, nearly half the muscles had unfavourable lines of action which could encourage edge loading. Conversely, in-vitro tests on nine cadaveric hips found that the hip capsular ligaments were slack in the mid-range of hip motion but tightened to restrain excessive hip rotation in positions close to the limits of hip motion. This passive restraint prevented the hip from moving into positions where the muscle lines of action were found to be unfavourable and thus could help protect the hip from edge loading. The ligaments were also found to protect the hip against impingement and dislocation. Out of the labrum, the ligamentum teres and the three capsular ligaments, it was found that the iliofemoral and ischiofemoral ligaments were primary restraints to hip rotation. These two capsular ligaments should be prioritised for protection/repair during hip surgery to maintain normal hip passive restraint. Whilst this can be technically demanding, failing to preserve/restore their function may increase the risk of osteoarthritic degeneration or hip replacement failure.Open Acces
    corecore