373 research outputs found

    Iris Biometric Watermarking for Authentication Using Multiband Discrete Wavelet Transform and Singular-Value Decomposition

    Get PDF
    The most advanced technology, watermarking enables intruders to access the database. Various techniques have been developed for information security. Watermarks and histories are linked to many biometric techniques such as fingerprints, palm positions, gait, iris and speech are recommended. Digital watermarking is the utmost successful approaches among the methods available. In this paper the multiband wavelet transforms and singular value decomposition are discussed to establish a watermarking strategy rather than biometric information. The use of biometrics instead of conservative watermarks can enhance information protection. The biometric technology being used is iris. The iris template can be viewed as a watermark, while an iris mode of communication may be used to help information security with the addition of a watermark to the image of the iris. The research involves verifying authentication against different attacks such as no attacks, Jpeg Compression, Gaussian, Median Filtering and Blurring. The Algorithm increases durability and resilience when exposed to geometric and frequency attacks. Finally, the proposed framework can be applied not only to the assessment of iris biometrics, but also to other areas where privacy is critical

    Establishing the digital chain of evidence in biometric systems

    Get PDF
    Traditionally, a chain of evidence or chain of custody refers to the chronological documentation, or paper trail, showing the seizure, custody, control, transfer, analysis, and disposition of evidence, physical or electronic. Whether in the criminal justice system, military applications, or natural disasters, ensuring the accuracy and integrity of such chains is of paramount importance. Intentional or unintentional alteration, tampering, or fabrication of digital evidence can lead to undesirable effects. We find despite the consequences at stake, historically, no unique protocol or standardized procedure exists for establishing such chains. Current practices rely on traditional paper trails and handwritten signatures as the foundation of chains of evidence.;Copying, fabricating or deleting electronic data is easier than ever and establishing equivalent digital chains of evidence has become both necessary and desirable. We propose to consider a chain of digital evidence as a multi-component validation problem. It ensures the security of access control, confidentiality, integrity, and non-repudiation of origin. Our framework, includes techniques from cryptography, keystroke analysis, digital watermarking, and hardware source identification. The work offers contributions to many of the fields used in the formation of the framework. Related to biometric watermarking, we provide a means for watermarking iris images without significantly impacting biometric performance. Specific to hardware fingerprinting, we establish the ability to verify the source of an image captured by biometric sensing devices such as fingerprint sensors and iris cameras. Related to keystroke dynamics, we establish that user stimulus familiarity is a driver of classification performance. Finally, example applications of the framework are demonstrated with data collected in crime scene investigations, people screening activities at port of entries, naval maritime interdiction operations, and mass fatality incident disaster responses

    A New Model of Securing Iris Authentication Using Steganography

    Get PDF
    The integration of steganography in biometric system is a solution for enhancing security in iris. The process of biometric enrollment and verification is not highly secure due to hacking activities at the biometric point system such as overriding iris template in database. In this paper, we proposed an enhancement of temporal-spatial domain algorithm which involves the scheme of Least Significant Bits (LSB) as the new model which converts iris images to binary stream and hides into a proper lower bit plane. Here, the stego key, n, will be inserted into the binary values from the plane which concealed the information; where n is the input parameter in binary values which inserted to the iris codes, m. These values produce the output which is the new iris stego image after binary conversion. Theoretically, the proposed model is promising a high security performance implementation in the future

    Verification approach for medical data in e-healthcare system based on biometric and watermarking

    Get PDF
    Medical information is crucial in the healthcare system, and its manipulation can lead to misdiagnosis. Medical images also contain personal information for patients; hence, information security and privacy protection are paramount when transferring medical images over the Internet. Biometric approach and watermarking techniques are used to achieve this purpose. The focus of this paper was on a biometric watermarking system with a frequency domain in which the sender's iris code is employed as a sender authentication key. The privacy of the patient's information is preserved by encrypting it and embedding the key in the cover medical image created by the Discrete Wavelet Transform. The algorithm has shown that the proposed system has met previous requirements

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Application Analyses of Visual Information Processing Techniques in E-Commerce

    Get PDF
    Digital visual information plays a very important role in E-Commerce (EC). Their usage brings forth many novel research topics for digital visual information processing skills and software. Some issues of application analysis of image/video information processing techniques suitable for EC are described in the paper. Visual design for goods or services trading, image retrieval based on visual contents, applications of images to the trade safety on the Internet, 3-dimensional display, virtual reality for goods browsing, inquiry based on image and video contents, trade safety and copyright protection of digital works based on digital watermarking are mainly discussed which are considered as the technological solutions that could enhance EC

    Foreword and editorial - July issue

    Full text link
    • 

    corecore