3 research outputs found

    Understanding Variability-Aware Analysis in Low-Maturity Variant-Rich Systems

    Get PDF
    Context: Software systems often exist in many variants to support varying stakeholder requirements, such as specific market segments or hardware constraints. Systems with many variants (a.k.a. variant-rich systems) are highly complex due to the variability introduced to support customization. As such, assuring the quality of these systems is also challenging since traditional single-system analysis techniques do not scale when applied. To tackle this complexity, several variability-aware analysis techniques have been conceived in the last two decades to assure the quality of a branch of variant-rich systems called software product lines. Unfortunately, these techniques find little application in practice since many organizations do use product-line engineering techniques, but instead rely on low-maturity \clo~strategies to manage their software variants. For instance, to perform an analysis that checks that all possible variants that can be configured by customers (or vendors) in a car personalization system conform to specified performance requirements, an organization needs to explicitly model system variability. However, in low-maturity variant-rich systems, this and similar kinds of analyses are challenging to perform due to (i) immature architectures that do not systematically account for variability, (ii) redundancy that is not exploited to reduce analysis effort, and (iii) missing essential meta-information, such as relationships between features and their implementation in source code.Objective: The overarching goal of the PhD is to facilitate quality assurance in low-maturity variant-rich systems. Consequently, in the first part of the PhD (comprising this thesis) we focus on gaining a better understanding of quality assurance needs in such systems and of their properties.Method: Our objectives are met by means of (i) knowledge-seeking research through case studies of open-source systems as well as surveys and interviews with practitioners; and (ii) solution-seeking research through the implementation and systematic evaluation of a recommender system that supports recording the information necessary for quality assurance in low-maturity variant-rich systems. With the former, we investigate, among other things, industrial needs and practices for analyzing variant-rich systems; and with the latter, we seek to understand how to obtain information necessary to leverage variability-aware analyses.Results: Four main results emerge from this thesis: first, we present the state-of-practice in assuring the quality of variant-rich systems, second, we present our empirical understanding of features and their characteristics, including information sources for locating them; third, we present our understanding of how best developers\u27 proactive feature location activities can be supported during development; and lastly, we present our understanding of how features are used in the code of non-modular variant-rich systems, taking the case of feature scattering in the Linux kernel.Future work: In the second part of the PhD, we will focus on processes for adapting variability-aware analyses to low-maturity variant-rich systems.Keywords:\ua0Variant-rich Systems, Quality Assurance, Low Maturity Software Systems, Recommender Syste

    Effects of Explicit Feature Traceability on Program Comprehension

    No full text
    Developers spend a substantial amount of their time with program comprehension. To improve their comprehension and refresh their memory, developers need to communicate with other developers, read the documentation, and analyze the source code. Many studies show that developers focus primarily on the source code and that small improvements can have a strong impact. As such, it is crucial to bring the code itself into a more comprehensible form. A particular technique for this purpose are explicit feature traces to easily identify a program’s functionalities. To improve our empirical understanding about the effects of feature traces, we report an online experiment with 49 professional software developers. We studied the impact of explicit feature traces, namely annotations and decomposition, on program comprehension and compared them to the same code without traces. Besides this experiment, we also asked our participants about their opinions in order to combine quantitative and qualitative data. Our results indicate that, as opposed to purely object-oriented code: (1) annotations can have positive effects on program comprehension; (2) decomposition can have a negative impact on bug localization; and (3) our participants perceive both techniques as beneficial. Moreover, none of the three code versions yields significant improvements on task completion time. Overall, our results indicate that lightweight traceability, such as using annotations, provides immediate benefits to developers during software development and maintenance without extensive training or tooling; and can improve current industrial practices that rely on heavyweight traceability tools (e.g., DOORS) and retroactive fulfillment of standards (e.g., ISO-26262, DO-178B)
    corecore