31 research outputs found

    Sleep Deprivation Attack Detection in Wireless Sensor Network

    Full text link
    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.Comment: 7 pages,4 figures, IJCA Journal February 201

    Efficient time synchronized one-time password scheme to provide secure wake-up authentication on wireless sensor networks

    Get PDF
    In this paper we propose Time Synchronized One-Time-Password scheme to provide secure wake up authentication. The main constraint of wireless sensor networks is their limited power resource that prevents us from using radio transmission over the network to transfer the passwords. On the other hand computation power consumption is insignificant when compared to the costs associated with the power needed for transmitting the right set of keys. In addition to prevent adversaries from reading and following the timeline of the network, we propose to encrypt the tokens using symmetric encryption to prevent replay attacks.Comment: International Journal Of Advanced Smart Sensor Network Systems (IJASSN), Vol 3, No.1, January 2013 http://airccse.org/journal/ijassn/papers/3113ijassn01.pd

    Efficient Utilization of Node Energy by Detecting and Preventing Denial of Sleep Attack

    Get PDF
    A Wireless Sensor Network is a self-configuring network of small sensor nodes communicating among themselves using radio signals, and deployed in quantity to sense, monitor and understand the physical world. WSN provide a bridge between the real physical and virtual worlds.WSNs have a wide range of potential applications to industry, science, transportation, civil infrastructure, and security.WSNs are particularly exposed to several kinds of attacks. Due to energy constrained property in WSN, Denial-Of-Sleep attacks are recognized as a serious attack. Attack of this type exhaust the energy of sensor nodes and reduce the sensor lifetime within few days compared to other attacks on WSN. In this paper we propose a challenge and response method to detect denial of sleep attack for efficient utilization of node energy. Simulation reveals that our proposal is energy efficient and able to achieve significant performance in preventing network nodes from Denial-Of-Sleep attack

    Defense on Split-Network Attack in Wireless Sensor Network

    Full text link

    DMP: Detouring Using Multiple Paths against Jamming Attack for Ubiquitous Networking System

    Get PDF
    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute

    Overview of Wireless Sensor Network

    Get PDF

    Security and Privacy in Wireless Sensor Networks

    Get PDF
    corecore