3 research outputs found

    Metrics for Operator Situation Awareness, Workload, and Performance in Automated Separation Assurance Systems

    Get PDF
    A research consortium of scientists and engineers from California State University Long Beach (CSULB), San Jose State University Foundation (SJSUF), California State University Northridge (CSUN), Purdue University, and The Boeing Company was assembled to evaluate the impact of changes in roles and responsibilities and new automated technologies, being introduced in the Next Generation Air Transportation System (NextGen), on operator situation awareness (SA) and workload. To meet these goals, consortium members performed systems analyses of NextGen concepts and airspace scenarios, and concurrently evaluated SA, workload, and performance measures to assess their appropriateness for evaluations of NextGen concepts and tools. The following activities and accomplishments were supported by the NRA: a distributed simulation, metric development, systems analysis, part-task simulations, and large-scale simulations. As a result of this NRA, we have gained a greater understanding of situation awareness and its measurement, and have shared our knowledge with the scientific community. This network provides a mechanism for consortium members, colleagues, and students to pursue research on other topics in air traffic management and aviation, thus enabling them to make greater contributions to the fiel

    Effects of data communications failure on air traffic controller sector management effectiveness, situation awareness, and workload

    No full text
    Data communications (datacom) is a tool needed to implement future concepts of air traffic management envisioned by NextGen. A combination of voice and pilotcontroller data communications will allow the National Airspace System to handle 2-3X current day traffic by 2025. The performance, situation awareness, and workload of seven air traffic controllers was analyzed in a medium fidelity, human-in-the-loop simulation with current day traffic levels, where a discrete datacom failure occurred after several trials with completely reliable datacom tools. Results indicate that the datacom failure resulted in decreased sector efficiency, decreased operator situation awareness, and increased operator workload. However, the controllers were likely able to maintain safe sector operations despite the datacom failure. Based on results and feedback by the controllers, it is recommended that NextGen systems provide quickly identifiable notification of a datacom failure, and that future controllers are given experience with adverse conditions in a simulated environment

    Developing an Objective Definition of Simulation Fidelity for Enroute Air Traffic Control

    Get PDF
    The domain of enroute Air Traffic Control (ATC) relies heavily on simulation for a variety of purposes. However, little research has been conducted in this particular domain to determine the link between fidelity and how simulation is used. This thesis introduces the first definition of simulation fidelity for the enroute ATC domain; it also presents a first standardized simulation environment categorization system. These are important foundational steps, as an online survey of 86 ATC industry professionals found that a significant majority believe that simulation fidelity is not well defined for enroute ATC. An initial definition of simulation for enroute ATC was developed based on documentation regarding the current enroute ATC operational environment and previous research experience in the enroute ATC domain. This definition underwent a preliminary validation during semi structured interviews conducted at an air navigation service provider (ANSP), where all 13 interviewees believed that the definition capture the environment components that can affect the fidelity of enroute ATC simulation. Subsequently,almost 85% of the 86 industry professionals surveyed at least ‘Agreed’ with the components in the definition, with no significant differences with regards to this agreement within the demographic groups of nationality, primary use of simulation, gender and years of experience working simulation. The definition helps to reduce the ambiguity and confusion around the concept of simulation fidelity within the domain of enroute ATC, and potentially provide the foundation for further investigation into the links between fidelity and simulation use within the ATC industry . A categorization system, similar to that used by the FAA for categorizing flight simulators, was then developed in order to operationalize the fidelity definition into five categories differentiating the fidelity of enroute ATC simulation environments. During the validation of this construct, a key limitation was identified in that, as it is currently structured, simulation environments can fall under more than one category. Potential modifications and future iterations of the categorization system are discussed. In addition, industry perceptions regarding how simulation of varying degrees of fidelity ought to be used depending on the task to be accomplished are presented and discussed. The perceptions indicate a strong desire to rely heavily on higher fidelity simulation to accomplish training, testing new operational concepts and researching human factors issues with few instances of support for lower fidelity simulation. However, these perceptions do not necessarily represent best practices. This investigation is meant to stimulate discussion of how simulation is currently used within the industry as well as offer potential areas for further research to determine if there are other options to the status quo
    corecore