8,102 research outputs found

    Transmission Capacity of Full-Duplex MIMO Ad-Hoc Network with Limited Self-Interference Cancellation

    Get PDF
    In this paper, we propose a joint transceiver beamforming design to simultaneously mitigate self-interference (SI) and partial inter-node interference for full-duplex multiple-input and multiple-output ad-hoc network, and then derive the transmission capacity upper bound (TC-UB) for the corresponding network. Condition on a specified transceiver antenna's configuration, we allow the SI effect to be cancelled at transmitter side, and offer an additional degree-of-freedom at receiver side for more inter-node interference cancellation. In addition, due to the proposed beamforming design and imperfect SI channel estimation, the conventional method to obtain the TC-UB is not applicable. This motivates us to exploit the dominating interferer region plus Newton-Raphson method to iteratively formulate the TC-UB. The results show that the derived TC-UB is quite close to the actual one especially when the number of receive-antenna is small. Moreover, our proposed beamforming design outperforms the existing beamforming strategies, and FD mode works better than HD mode in low signal-to-noise ratio region.Comment: 7 pages, 4 figures, accepted by Globecom 201

    Multi-Antenna Assisted Virtual Full-Duplex Relaying with Reliability-Aware Iterative Decoding

    Full text link
    In this paper, a multi-antenna assisted virtual full-duplex (FD) relaying with reliability-aware iterative decoding at destination node is proposed to improve system spectral efficiency and reliability. This scheme enables two half-duplex relay nodes, mimicked as FD relaying, to alternatively serve as transmitter and receiver to relay their decoded data signals regardless the decoding errors, meanwhile, cancel the inter-relay interference with QR-decomposition. Then, by deploying the reliability-aware iterative detection/decoding process, destination node can efficiently mitigate inter-frame interference and error propagation effect at the same time. Simulation results show that, without extra cost of time delay and signalling overhead, our proposed scheme outperforms the conventional selective decode-and-forward (S-DF) relaying schemes, such as cyclic redundancy check based S-DF relaying and threshold based S-DF relaying, by up to 8 dB in terms of bit-error-rate.Comment: 6 pages, 4 figures, conference paper has been submitte

    All-Digital Self-interference Cancellation Technique for Full-duplex Systems

    Full text link
    Full-duplex systems are expected to double the spectral efficiency compared to conventional half-duplex systems if the self-interference signal can be significantly mitigated. Digital cancellation is one of the lowest complexity self-interference cancellation techniques in full-duplex systems. However, its mitigation capability is very limited, mainly due to transmitter and receiver circuit's impairments. In this paper, we propose a novel digital self-interference cancellation technique for full-duplex systems. The proposed technique is shown to significantly mitigate the self-interference signal as well as the associated transmitter and receiver impairments. In the proposed technique, an auxiliary receiver chain is used to obtain a digital-domain copy of the transmitted Radio Frequency (RF) self-interference signal. The self-interference copy is then used in the digital-domain to cancel out both the self-interference signal and the associated impairments. Furthermore, to alleviate the receiver phase noise effect, a common oscillator is shared between the auxiliary and ordinary receiver chains. A thorough analytical and numerical analysis for the effect of the transmitter and receiver impairments on the cancellation capability of the proposed technique is presented. Finally, the overall performance is numerically investigated showing that using the proposed technique, the self-interference signal could be mitigated to ~3dB higher than the receiver noise floor, which results in up to 76% rate improvement compared to conventional half-duplex systems at 20dBm transmit power values.Comment: Submitted to IEEE Transactions on Wireless Communication

    Self-Interference Cancellation with Nonlinear Distortion Suppression for Full-Duplex Systems

    Full text link
    In full-duplex systems, due to the strong self-interference signal, system nonlinearities become a significant limiting factor that bounds the possible cancellable self-interference power. In this paper, a self-interference cancellation scheme for full-duplex orthogonal frequency division multiplexing systems is proposed. The proposed scheme increases the amount of cancellable self-interference power by suppressing the distortion caused by the transmitter and receiver nonlinearities. An iterative technique is used to jointly estimate the self-interference channel and the nonlinearity coefficients required to suppress the distortion signal. The performance is numerically investigated showing that the proposed scheme achieves a performance that is less than 0.5dB off the performance of a linear full-duplex system.Comment: To be presented in Asilomar Conference on Signals, Systems & Computers (November 2013

    Hardware Impairments Aware Transceiver Design for Bidirectional Full-Duplex MIMO OFDM Systems

    Full text link
    In this paper we address the linear precoding and decoding design problem for a bidirectional orthogonal frequencydivision multiplexing (OFDM) communication system, between two multiple-input multiple-output (MIMO) full-duplex (FD) nodes. The effects of hardware distortion as well as the channel state information error are taken into account. In the first step, we transform the available time-domain characterization of the hardware distortions for FD MIMO transceivers to the frequency domain, via a linear Fourier transformation. As a result, the explicit impact of hardware inaccuracies on the residual selfinterference (RSI) and inter-carrier leakage (ICL) is formulated in relation to the intended transmit/received signals. Afterwards, linear precoding and decoding designs are proposed to enhance the system performance following the minimum-mean-squarederror (MMSE) and sum rate maximization strategies, assuming the availability of perfect or erroneous CSI. The proposed designs are based on the application of alternating optimization over the system parameters, leading to a necessary convergence. Numerical results indicate that the application of a distortionaware design is essential for a system with a high hardware distortion, or for a system with a low thermal noise variance.Comment: Submitted to IEEE for publicatio
    • …
    corecore