2 research outputs found

    Effectiveness of the DIDIM method with respect to the usual CLOE method. Application to the dynamic parameters identification of an industrial robot

    No full text
    International audienceThe Usual Closed Loop Output Error (CLOE) method for dynamic parameters identification of robots has several drawbacks: slow convergence, sensitivity to initial conditions and the calculation of significant parameters is not easy-to-run. Recently a new CLOE method called as DIDIM for Direct and Inverse Identification Model needing only actual forces/torques data was validated on rigid robots. This method avoids the drawbacks of the usual CLOE method. With the DIDIM method, the optimal parameters minimize the 2-norm of the error between the actual forces/torques and the simulated ones. It is based on a closed-loop simulation of the robot using the direct dynamic model, the same structure of control-law and the same reference trajectory for both the actual robot and the simulated one. The DIDIM method simplifies dramatically the non-linear Least Squares problem by using the Inverse Dynamic Model in order to obtain an analytical expression of the simulated forces/torques which are linear in the parameters. This explains why the DIDIM method has a fast convergence. In this paper, the DIDIM method is compared with the usual CLOE method which uses the actual positions as output. Experiments are performed on a 6 degrees of freedom robot Stäubli TX40

    Identification dynamique des robots à flexibilités articulaires

    Get PDF
    This work is the result of collaboration between IRCCyN and ONERA on dynamic identification of robots with joint flexibilities, used for example in new applications for collaborative robotics. The usual identification technique in robotics requires the actual data of motor positions and the actual data of elastic deformations, which are usually not available in industrial robots. Recently, a new technique called DIDIM (Direct and Inverse Dynamic Identification Models), which uses only the data of motor torques, has been proposed and validated on rigid robots. This thesis proposes an extension of DIDIM, which uses no actual position data at all, to the case of robots with joint flexibilities. First, a comparative study on a rigid 6-axis robot with 61 parameters, shows the superiority of DIDIM over a conventional method CLOE (Closed- Loop Output Error) in position: DIDIM converges 100 times faster and is strongly more robust with respect to errors in the initial conditions. Second, DIDIM is extended to robots with joint flexibilities in a three steps procedure: a rigid model identification at low frequencies, an approximated identification of the flexible mode and of the inertia of each side of the flexibility, and finally the overall accurate identification of the full flexible dynamic model. A first experimental validation is performed on a test bench robot with one joint and one flexibility. A second validation in simulation on the 7 axes Kuka Light Weight Robot shows the effectiveness of DIDIM applied to industrial robots with joint flexibilities, in the case where the actual control law is known.Ce travail résulte d'une collaboration entre l'IRCCyN et l'ONERA sur l'identification dynamique des robots à flexibilités articulaires, utilisés par exemple dans les applications de la robotique collaborative. La technique d'identification usuelle en robotique nécessite la mesure des positions moteurs et la mesure des déformations élastiques, non disponibles sur les robots industriels. Récemment, une nouvelle technique nommée DIDIM (Direct and Inverse Dynamic Identification Models), qui utilise uniquement la mesure des efforts moteurs, a été proposée et validée sur les robots rigides. Cette thèse propose une extension de DIDIM, qui n'utilise aucune mesure de position, aux cas des robots à flexibilités articulaires. On réalise d'abord une étude comparative sur un robot rigide 6 axes avec 61 paramètres, qui démontre la supériorité de DIDIM sur une méthode usuelle en boucle fermée à erreur de sortie en position (CLOE) : DIDIM converge 100 fois plus vite et est largement plus robuste vis à vis des erreurs sur les conditions initiales.Ensuite DIDIM est étendue aux robots à flexibilités articulaires avec une procédure en trois étapes : une identification du modèle rigide en basses fréquences, une identification du mode flexible et des inerties de part et d'autre de la flexibilité et enfin une identification globale précise du modèle dynamique flexible complet. Une validation expérimentale est réalisée sur un banc d'essai de robot un axe avec une flexibilité. Ensuite, une validation en simulation sur le robot 7 axes Kuka Light Weight Robot montre l'efficacité de la méthode DIDIM appliquée aux robots à flexibilités articulaires industriels, dans le cas où la commande est connue
    corecore