546 research outputs found

    Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2)

    Get PDF
    Abstract. Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work. </jats:p

    Finite size scaling for quantum criticality using the finite-element method

    Full text link
    Finite size scaling for the Schr\"{o}dinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite element method was shown to be a powerful numerical method for ab initio electronic structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, density functional theory under the local density approximation, and an "exact"' formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.Comment: 15 pages, 19 figures, revision based on suggestions by referee, accepted in Phys. Rev.

    Reduced Order and Surrogate Models for Gravitational Waves

    Full text link
    We present an introduction to some of the state of the art in reduced order and surrogate modeling in gravitational wave (GW) science. Approaches that we cover include Principal Component Analysis, Proper Orthogonal Decomposition, the Reduced Basis approach, the Empirical Interpolation Method, Reduced Order Quadratures, and Compressed Likelihood evaluations. We divide the review into three parts: representation/compression of known data, predictive models, and data analysis. The targeted audience is that one of practitioners in GW science, a field in which building predictive models and data analysis tools that are both accurate and fast to evaluate, especially when dealing with large amounts of data and intensive computations, are necessary yet can be challenging. As such, practical presentations and, sometimes, heuristic approaches are here preferred over rigor when the latter is not available. This review aims to be self-contained, within reasonable page limits, with little previous knowledge (at the undergraduate level) requirements in mathematics, scientific computing, and other disciplines. Emphasis is placed on optimality, as well as the curse of dimensionality and approaches that might have the promise of beating it. We also review most of the state of the art of GW surrogates. Some numerical algorithms, conditioning details, scalability, parallelization and other practical points are discussed. The approaches presented are to large extent non-intrusive and data-driven and can therefore be applicable to other disciplines. We close with open challenges in high dimension surrogates, which are not unique to GW science.Comment: Invited article for Living Reviews in Relativity. 93 page

    Polynomial approximation of non-Gaussian unitaries by counting one photon at a time

    Full text link
    In quantum computation with continous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the lab. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.Comment: 11 pages, 7 figure

    Quadrature Strategies for Constructing Polynomial Approximations

    Full text link
    Finding suitable points for multivariate polynomial interpolation and approximation is a challenging task. Yet, despite this challenge, there has been tremendous research dedicated to this singular cause. In this paper, we begin by reviewing classical methods for finding suitable quadrature points for polynomial approximation in both the univariate and multivariate setting. Then, we categorize recent advances into those that propose a new sampling approach and those centered on an optimization strategy. The sampling approaches yield a favorable discretization of the domain, while the optimization methods pick a subset of the discretized samples that minimize certain objectives. While not all strategies follow this two-stage approach, most do. Sampling techniques covered include subsampling quadratures, Christoffel, induced and Monte Carlo methods. Optimization methods discussed range from linear programming ideas and Newton's method to greedy procedures from numerical linear algebra. Our exposition is aided by examples that implement some of the aforementioned strategies
    corecore