2,766 research outputs found

    ROACH accelerated BLAST

    Get PDF
    Includes abstract.Includes bibliographical references (p. 115-118).Reconfigurable computing, in recent years, has been taking great strides in becoming part of mainstream computing largely due to the rapid growth in the size of FPGAs and their ability to adapt to certain complex applications efficiently. This dissertation investigates the reuse of application specific hardware developed for radio astronomy in accelerating a popular bioinformatics algorithm

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Real-Time, Dynamic Hardware Accelerators for BLAS Computation

    Get PDF
    This paper presents an approach to increasing the capability of scientific computing through the use of real-time, partially reconfigurable hardware accelerators that implement basic linear algebra subprograms (BLAS). The use of reconfigurable hardware accelerators for computing linear algebra functions has the potential to increase floating point computation while at the same time providing an architecture that minimizes data movement latency and increase power efficiency. While there has been significant work by the computing community to optimize BLAS routines at the software level, optimizing these routines in hardware using reconfigurable fabrics is in its infancy. This paper begins with a comprehensive overview of the history and evolution of BLAS for use in scientific computing. In the reviews current successes in using reconfigurable computing architectures achieve acceleration. It then presents an investigation of an accelerator approach with a granularity at the logic circuit level through real-time, partial reconfiguration of a programmable fabric with static accelerator cache memory to minimize data movement. Empirical data is presented for a study on a single-FPGA

    Analysis of the reconfiguration latency and energy overheads for a Xilinx Virtex-5 FPGA

    Get PDF
    In this paper we have evaluated the overhead and the tradeoffs of a set of components usually included in a system with run-time partial reconfiguration implemented on a Xilinx Virtex-5. Our analysis shows the benefits of including a scratchpad memory inside the reconfiguration controller in order to improve the efficiency of the reconfiguration process. We have designed a simple controller for this scratchpad that includes support for prefetching and caching in order to further reduce both the energy and latency overhead

    HLS-based HW/SW co-design of the post-quantum classic McEliece cryptosystem

    Get PDF
    While quantum computers are rapidly becoming more powerful, the current cryptographic infrastructure is imminently threatened. In a preventive manner, the U.S. National Institute of Standards and Technology (NIST) has initiated a process to evaluate quantum-resistant cryptosystems, to form the first post-quantum (PQ) cryptographic standard. Classic McEliece (CM) is one of the most prominent cryptosystems considered for standardization in NIST’s PQ cryptography contest. However, its computational cost poses notable challenges to a big fraction of existing computing devices. This work presents an HLS-based, HW/SW co-design acceleration of the CM Key Encapsulation Mechanism (CM KEM). We demonstrate significant maximum speedups of up to 55.2 ×, 3.3 ×, and 8.7 × in the CM KEM algorithms of key generation, encapsulation, and decapsulation respectively, comparing to a SW-only scalar implementation.This research was supported by the European Union Regional Development Fund within the framework of the ERDF Operational Program of Catalonia 2014-2020 with a grant of 50% of the total cost eligible, under the DRAC project [001- P-001723]. It was also supported by the Spanish goverment (grant RTI2018-095094-B-C21 “CONSENT”), by the Spanish Ministry of Science and Innovation (contracts PID2019- 107255GB-C21, PID2019-107255GB-C21) and by the Catalan Government (contracts 2017-SGR-1414, 2017-SGR-705). This work has also received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No. 871467. V. Kostalabros has been partially supported by the Agency for Management of University and Research Grants (AGAUR) of the Government of Catalonia under "Ajuts per a la contractació de personal investigador novell" fellowship No. 2019FI B01274. M. Moreto was also partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under "Ramón y Cajal" fellowship No. RYC-2016-21104.Peer ReviewedPostprint (author's final draft

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio
    • …
    corecore