
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

227

IJRITCC | January 2017, Available @ http://www.ijritcc.org

Real-Time, Dynamic Hardware Accelerators for BLAS Computation

Raymond J. Weber
1
, Brock J. LaMeres

2*

1,2
Dept. of Electrical and Computer Engineering,

Montana State University

Bozeman, MT. USA
1
raymond.weber@msu.montana.edu,

2
lameres@montana.edu

Justin A. Hogan
3

3
Research & Development Lab

S2 Corporation

Bozeman, MT. USA
3
justin.a.hogan@gmail.com

* Corresponding author: Brock J. LaMeres

Abstract—This paper presents an approach to increasing the capability of scientific computing through the use of real-time, partially

reconfigurable hardware accelerators that implement basic linear algebra subprograms (BLAS). The use of reconfigurable hardware accelerators

for computing linear algebra functions has the potential to increase floating point computation while at the same time providing an architecture

that minimizes data movement latency and increase power efficiency. While there has been significant work by the computing community to

optimize BLAS routines at the software level, optimizing these routines in hardware using reconfigurable fabrics is in its infancy. This paper

begins with a comprehensive overview of the history and evolution of BLAS for use in scientific computing. In the reviews current successes in

using reconfigurable computing architectures achieve acceleration. It then presents an investigation of an accelerator approach with a

granularity at the logic circuit level through real-time, partial reconfiguration of a programmable fabric with static accelerator cache memory to

minimize data movement. Empirical data is presented for a study on a single-FPGA.

Keywords-Basic linear algebra subprograms; partial reconfiguration; reconfigurable computers

__*****___

I. INTRODUCTION

Computer-based numerical analysis and visualization
enables our science and engineering communities to tackle
some of the most complex problems facing society.
Performing linear algebra on large sets of data is at the core of
scientific computing. Advances in the underlying device
technology to perform linear algebra has enabled scientific
computing to impact a wide range of fields including biological
and physical sciences, geosciences, finance, medicine, energy
and defense. Increasing the computational infrastructure
available to researchers is a key priority of numerous federal
agencies [1], [2], [3], [4]. In a 2012 budget request to congress,
the National Science Foundation (NSF) stated that deploying a
comprehensive cyberinfrastructure "has the potential to
revolutionize every science and engineering discipline as well
as education [5]." In order to continue to enhance the
capability of the nation's cyberinfrastructure, novel computer
architectures and technologies are needed that overcome
obstacles identified by numerous researchers [6], [7], [8] that
will prevent continued scaling of scientific computing clusters.
To overcome these obstacles, innovations must be made that
exploit massive parallel computation resources, minimize the
latency of large data movement, and maximize power
efficiency. The underlying engine of scientific computing is
the execution of basic linear algebra subprograms (BLAS).
These subprograms represent the most primitive operations
needed for numerical linear algebra and are used for the
majority of scientific computing algorithms today. Targeting
innovations to improve the execution efficiency of BLAS will
provide the greatest gain in computing performance.

In this paper, we propose an architecture for an FPGA-
based hardware accelerator for BLAS that exploits real-time,
partial reconfiguration. We assert that this approach will
significantly increase computation of BLAS by reconfiguring
the hardware during run-time to implement the BLAS primitive
being executed. This provides the most efficient resource
utilization by using the FPGA solely for the BLAS primitive
being executed and the exact primitive argument size. This is

an improvement over implementing large sets of BLAS on an
FPGA in which only portions are used at any given time. This
is also an improvement over creating oversized BLAS
primitives that are not properly matched to the current
argument size. The ability to dynamically create the optimized
BLAS primitive makes our approach more than a simpler
schedule but a true real-time hardware resource manager.

We also assert that this approach will reduce data
movement by leaving the data within the memory of the FPGA
and reconfiguring the hardware around it. This is an
improvement over a complete FPGA reconfiguration in which
the data is lost and must be reloaded. The approach of leaving
the argument data in FPGA memory promises to scale across
multiple FPGAs with a linear performance increase. This is an
improvement over fixed size caches that must be swapped
and/or reloaded as the design extends beyond a single device.

II. A BRIEF HISTORY OF SCIENTIFIC COMPUTING

A. Basic Linear Algebra Subroutines

 The most computationally expensive part of scientific

computing is performing numerical linear algebra [9], [10],

[11]. These computations include solving linear systems of

equations, linear least squares problems, eigenvalue problems

and singular value problems. At the core of numerical linear

algebra are floating point operations on large sets of data.

Increasing the efficiency of these low-level operations has the

largest impact on improving performance of scientific

computing. In the 1970s a group of researchers (Larson, et al)

developed a set of low-level subprograms for the basic

operations of numerical linear algebra [12], [13], [14], [15].

This package, known as Basic Linear Algebra Subprograms,

has become the underlying engine for the majority of scientific

computing algorithms in use today. BLAS are divided into

three levels, depending on the type of array argument the

operation is performed on. The Level 1 BLAS perform vector-

vector operations (e.g., 1D/1D). The Level 2 BLAS perform

matrix-vector operations (e.g., 2D/1D). The Level 3 BLAS

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

228

IJRITCC | January 2017, Available @ http://www.ijritcc.org

perform matrix-matrix operations (2D/2D). The rationale for

the partitioning of the subprograms into three levels is to give

an indication for how much optimization can be accomplished,

primarily with regards to minimizing memory access latency.

Level 2 and Level 3 BLAS consume the most memory, thus,

they have the most room for optimization based on the

architecture of the underlying computer system [16].

Numerous packages were developed to provide higher-level

numerical functionality based on BLAS. The LINPACK

library, based on Level 1 BLAS, was developed in the late

1970s to provide solvers for linear equations and linear least

squares [17]. The EISPACK library was also developed in the

1970s to provide numerical computation of eigenvalues and

eigenvectors of matrices [18]. These original numerical

packages were designed for sequentially executing computers.

Thus, as computer technology advanced and parallel and

distributed resources became available, these packages became

highly inefficient as they ignored multi-layered memory

hierarchies. As a result, they spent a considerable amount of

time moving data instead of performing floating point

operations.

 In the 1990s the LAPACK library was developed, which

consolidated the operations from LINPACK and EISPACK in

addition to adding support for matrix factorizations (e.g., LU,

Cholesky, QR, SVD, and Schur) [19]. The original goal of

LAPACK was to optimize the operations from LINPACK and

EISPACK for use on shared memory and parallel processors.

The LAPACK library was designed to exploit the Level 3

BLAS, executed on multiple machines with an inherent

memory hierarchy. While the LAPACK library presented the

foundation for increasing the performance of scientific

computation through scaling resources, it did not efficiently

support heterogeneous resource scaling. As a result, the Basic

Linear Algebra Communication Subprograms (BLACS) was

developed to create a linear algebra oriented message passing

interface across a large range of distributed computing

platforms [20]. Finally, ScaLAPACK was developed in the

late 1990s to accomplish the original goals of LAPACK, but

using distributed, heterogeneous computers while overcoming

machine dependencies [21]. Any machine with BLAS,

BLACS and LAPACK installed can be utilized as a resource

for computation using the ScaLAPACK libray. Improvements

to the BLAS package have also been released to optimize

functions for distributed computation and support for sparse

matrix operations [22], [23]. Furthermore, BLAS has been

augmented with support for direct parallel operation through

the Parallel BLAS (PBLAS) package [24].

B. Software Tuning of BLAS Kernels

 The history of numerical linear algebra packages just

described would lead some to believe that most of the

technical issues of scaling scientific computing capability have

been solved and all that remains is adding computing

resources. However, the ability to exploit massive amounts of

parallel computation and storage resources has introduced

some of the most complicated issues in computer science. The

rapid evolution of computer hardware has further complicated

the problem by continually adding more sophisticated, yet

heterogeneous resources to growing computing clusters. In

the past decade, a considerable amount of research has been

focused on tuning the BLAS software for the computer

architecture it is deployed on. In 2008, Goto et al. [25]

presented the details of how to hand-tune Level-3 BLAS

matrix-matrix operations for a variety of existing computing

architectures. The authors showed how proper tuning can

achieve increased performance across a variety of platforms.

This work demonstrated the potential for performance

improvement through proper kernel optimization, but also

highlighted the complexity and time consuming nature of

hand-tuning. Compilers provide an inherent level of

optimization, but rely on simple analytical models of the

hardware to compute machine-dependent parameters such as

tile sizes and loop unrolling factors [16]. These model-driven

optimizations often do not capture all of the complexities of

modern architectures [26]. In 2008, a performance study by

Soliman [27] of BLAS executed on an Intel Xeon multi-core

system demonstrated how complex this problem is. The

performance of BLAS varied widely depending on input

argument sizes and how they mapped into the available

processor cores and memory hierarchy. This study highlighted

how having parallel, multi-core resources often does not

improve performance if the software cannot exploit them

efficiently. An example was shown where a two-core system

outperformed a four-core system even when using fewer

threads for the computation due to L2 cache latency [27].

 As an improvement to model-driven optimization,

researchers have been exploring the use of empirical hardware

searches to determine machine-dependent parameters and then

use them to automatically generate optimal BLAS libraries. In

2005, Demmel et al. [16] presented a comprehensive overview

of the work in this area and indicated that the primary factor

dominating BLAS kernel performance is the effective use of

the machine's memory hierarchy. Other factors also contribute

to performance and must be considered such as functional unit

structure, the number of registers, and pipeline topologies.

Due to the rapid advancement in computer hardware, it is

impractical to optimize the machine-dependent kernel

implementation through hand-coded programming efforts.

Further, the effort to create machine-tuned compilers for such

a narrowly focused application was deemed too large of a task

to be justified, particularly with new hardware architectures

continually being introduced. Instead, the authors proposed

automatic tuning systems to empirically determine key

operating parameters of the underlying hardware. These

systems effectively generate a large set of BLAS kernels with

different operating parameters and then measure the

performance on the actual hardware. Once key parameters are

determined, the system then generates the most optimal BLAS

kernel code to be compiled. Demmel et al. presented two

systems. The first is called Automatically Tuned Linear

Algebra Software (ATLAS) and is targeted for dense matrix

operations. ATLAS performs a comprehensive, empirical

analysis of the computer hardware to select the optimal

operating parameters. The second is called Optimized Sparse

Kernel Interface (OSKI). OSKI uses a similar search

algorithm as ATLAS but takes advantage of the regularity of

sparse data structures to reduce the tuning time. Both systems,

and their variants, provide an improvement over static

heuristics or profile counts that are often stated with metrics

that do not directly represent the actual architecture

performance.

 Research into tuning the BLAS kernels to optimize for the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

229

IJRITCC | January 2017, Available @ http://www.ijritcc.org

underlying computer hardware continues to this day. In 2008,

Reddy et al. [28] proposed a new package specifically for

tuning across heterogeneous, parallel hardware called

HeteroPBLAS. In 2008/09, Seik et al. [29] and Belter et al.

[30] presented optimization that considers a sequence of

BLAS operations instead of just a single BLAS computation.

In 2010, Jessup et al. [31] presented a graphical interface in

order to set tuning parameters based on either heuristics or the

results of a machine search. In 2013, Duchateau et al. [32]

proposed generating the kernel code directly from linear

algebra equations in order to create the most efficient

implementation. While each of these recent contributions

produced incremental advancement to BLAS kernel

optimization, they are still focused on extracting machine-

dependent parameters for the generation of the BLAS kernel

software.

C. Hardware Optimization for BLAS Computation

 In the last decade, there has been a parallel thread of

research investigating how to best create computer hardware

to execute the BLAS kernels. In this approach, the hardware

is architected to accommodate the low-level BLAS. Bell et al.

[7] and Szalay et al. [33] described in 2006 and 2008

respectively how Petascale and Exascale computing systems

for use in numerical analysis need to be architected with

balance between computational units, memory hierarchy, and

I/O bandwidth if they are to be realistically scaled. In 2012,

Pedram et al [34] presented a design approach for multi-core

systems based specifically on computing Level-3 BLAS that

promised to deliver increased computation while conserving

energy. In 2012, Intel released a high-performance computing

(HPC) accelerator [35] with a similar architecture to those

discussed in [7], [33], [34] that provides abundant cores (up to

80 on a single chip) that are dedicated to only computation.

All of this work has been focused on developing architectures

with abundant, general-purpose, multi-core processors and

ignores the use of more customized, heterogeneous computing

resources.

 Graphics Processing Units have received recent interest

for use in scientific computing as they offer increased amounts

of parallel computation over multi-core processors and have

already been optimized for low-level arithmetic operations

[36]. GPU accelerator cards have been developed for use in

clusters to provide heterogeneous computing resources with

promising results. In 2008, Volkov and Demmel [37]

presented a benchmarking study of dense, Level-3 BLAS

executed on a variety of NVIDIA GPUs. In particular, they

demonstrated LU, QR and Cholesky factorization rates at over

300 GFLOPS. Numerous other studies in the last 3 years have

shown how GPUs can be used to accelerate scientific

computing [38], [39], [40], [41], [42]. The primary drawback

of GPU acceleration is the difficulty in the programming

model, which borrows much of its abstraction from graphics

applications [37]. To achieve the maximum efficiency from a

GPU, it requires the developer to have an intimate knowledge

of the underlying architecture and how the libraries exploit the

parallel resources.

D. Reconfigurable Computing Platforms for BLAS

Computation

Reconfigurable computing is an area that promises to

provide the most improvement in scientific computing, not

only in terms of computation, but also in power efficiency.

The theory of reconfigurable computing is that the hardware

can be changed at run-time to implement the exact algorithm

being executed. This is as opposed to mapping the software

into fixed hardware. The primary technology in use today for

reconfigurable computing is the Field Programmable Gate

Array. An FPGA contains abundant, programmable logic

elements that are connected through a programmable

interconnect system. While the overhead associated with the

programmability of an FPGA does impact system

performance, FPGAs are extremely attractive for scientific

computing due to the promise of massive parallelism. Figures

1 and 2 show the theoretical computation rates of a single

FPGA device (64-bit and 32-bit) compared to state-of-the-art,

multi-core system released during the same year [43]. These

rates are accomplished by exploiting the abundant parallel

resources on the FPGA without the need for cache swapping

as in a multi-core CPU. Theoretical computation rates for a

Virtex-6 FPGA (in 2010) reach 116 GFLOPS compared to the

only 72 GFLOPS and 110 GFLOPS from the latest Intel and

AMD multi-core CPUs respectively [44].

FPGA technology also promises to deliver improved energy

efficiency. FPGAs are a widely-used technology, thus they

have sufficient volume to warrant the most recent process

nodes. Modern FPGAs are being fabricated in the 20 nm

process node resulting in over 4M logic resources on a single

device [45]. Using the latest process node and having the

ability to optimize the hardware for the exact algorithm

provides significant improvements in energy efficiency.

FPGAs have been shown to consume 84% less energy per

computation than GPUs implemented on the same node [46]

and as much as an order of magnitude less power consumption

compared to CPUs implemented on the same node [47]. The

parallelism and energy efficiency of FPGAs has made them

highly competitive with general purpose processors in fields

such as scientific computing [48], [49], [50], imaging

applications [51], [52], cryptology [53], and communication

[54], [55].

Recently, FPGA technology has advanced to the point

where their use as hardware accelerators within traditional

CPU-based system is feasible. In this use-model, FPGAs are

Figure 1. Predicted Opereron Processor vs. Virtex FPGA 64-Bit Performance
[44].

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

230

IJRITCC | January 2017, Available @ http://www.ijritcc.org

programmed to execute some of the most computationally

expensive operations of an algorithm. The host CPU off-loads

the computation to the FPGA when these operations are

needed. In scientific computing applications, the FPGAs are

most often programmed to compute linear algebra, particularly

BLAS. In 2008, Zhuo & Prasanna [56] presented a design

trade-off study of FPGAs as hardware accelerators for

performing linear algebra based on the state-of-the-art at the

time (e.g., a Xilinx Virtex-II). The authors showed how

FPGAs could outperform general-purpose processors (e.g., 2.2

GHz AMD Operton) for operations such as matrix

multiplication and matrix factorization, achieving computation

nearing 4 GFLOPS. They also showed how FPGAs promised

to scale more efficiently than increasing general-purpose CPU

nodes because they do not suffer from the memory hierarchy

issues. Instead, multiple FPGAs can be connected together to

scale the computation resources directly.

Several high-performance computers were introduced circa

2008 by commercial vendors that used FPGAs as hardware

accelerators. These systems represented the first steps by

industry into reconfigurable computing. In 2008, El-Ghazawi

et al. [57] presented an overview of three early commercial

reconfiguration computer systems, the Cray XD1 [58], the

SRC-6 [59], and the SGI Altrix/RASC [60]. Each of these

systems contains general-purpose processors with FPGA

hardware accelerators. These systems were benchmarked

using a variety of scientific computing applications such as

molecular dynamics, bioinformatics, and cryptanalysis. In

each application, these systems showed significant speedup

compared to a general purpose AMD Opteron processor

implementation. In some cases, as much as four orders of

magnitude improvement in performance, up to three orders of

magnitude reduction in power consumption, and two orders of

magnitude savings in cost and size were achieved by

performing the computation on the FPGA hardware

accelerator [57].

 The study of FPGA performance for accelerating linear

algebra also continues to this day. In 2010, Kestur et al. [61]

presented a new comparison of the performance of BLAS

between FPGAs, CPUs, and GPUs. This compared the

performance of Level-2 BLAS on a Xilinx Virtex-5 FPGA, a

3.15 GHz Intel Core 2, and a Nvidia 9500 GT. The results

showed that the FPGA was able to achieve performance on par

with the other systems (>3 GFLOPS) while achieving

significantly better power efficiency (>2k iterations per Joule).

In 2012, Chungz et al. [62] demonstrated 6.4 GFLOPS

performance on a single Xilinx Virtex-6 FPGA for a matrix

multiplication. Also in 2012, Jovanovic et al. [63]

demonstrated 4.5x better performance on a matrix

multiplication compared to state-of-the-art 4-core processors

(Intel Core2Quad and AMD Phenom X4, both at 2.8GHz).

And in 2013, Cappello & Strenksi [64] presented a

performance evaluation on a Xilinx Virtex-7 FPGA, which

demonstrated a matrix multiplication at 180 GFLOPS when

using the built-in DSP slices within the FPGA.

E. Our Contribution

 While the promise of exploiting FPGAs as hardware

accelerators for scientific computing is immense, one of the

practical barriers to implementation is in creating a real-time,

reconfigurable system that dynamically brings accelerators

online when needed. The first component of such a system is

abstracting this reconfiguration from the user through a

hardware operating system [Agne 2014 and Andrews 2014].

The second component is understanding how the hardware

reconfiguration impacts system efficiency both in terms of

latency and power consumption. Our work aims to provide

insight into the second component of such a system. This

paper presents empirical data on the impact of real-time

reconfiguration of an FPGA on both computation and power

efficiency when bringing BLAS accelerators online.

III. EVALUATION OF A PROTOTYPE RC BLAS SYSTEM

 In order to prove the viability of a reconfigurable system

that can dynamically bring on FPGA-based BLAS

accelerators, our team implemented a prototype system to

compute level 1 BLAS operations for a variety of vector sizes.

The system was designed to mimic an HPC consisting of a

general-purpose processor augmented with hardware

accelerators. In order to provide a fair performance

comparison between different processing nodes often

encounter in a typical HPC (i.e., the GP processor and

accelerator hardware are implemented in different fabrication

processes), the system was designed to contain both the host

processor and the accelerators on a single FPGA. Figure 3

shows a graphical depiction of the potential improvements that

can be gained by using a hardware accelerated system. The

improvement in power efficiency comes from behavior that

while the instantaneous power consumption is higher in the

accelerated system, the time of the computation is much less

than a GP system. This means the overall energy used is less.

The improvement in performance comes from the behavior

that the computation in the accelerated system takes less time

compared to the GP system, even after considering the latency

of dynamically bringing on the accelerator tile. The latency in

this system is labeled “PR Operation”, referring to the partial

reconfiguration of the FPGA to instantiate the accelerator.

Figure 2. Predicted Opereron Processor vs. Virtex FPGA 32-Bit
Performance [44].

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

231

IJRITCC | January 2017, Available @ http://www.ijritcc.org

A. Prototype Architecture

 The prototype developed consisted of a Virtex-6

(LX130T) FPGA that contained the reconfigurable fabric. The

Virtex-6 contains a MicroBlaze soft processor (32-bit RISC)

that represents the primary host processor. This processor

takes approximately 15% of the available resources of the

Virtex-6 leaving the rest for reconfigurable accelerator tiles. A

separate Xilinx Spartan-6 FPGA controlled the partial

reconfiguration of the accelerator tiles on the Virtex-6 FPGA.

 Two types of hardware accelerator tiles were implemented

for the preliminary study. The first was a simple floating point

unit (FPU) that can compute the individual operations of L1

BLAS one at a time. The FPU accelerator allows faster

computation than running the operations on the MicroBlaze by

itself, but is not optimized for vector operations. This

represents a very basic approach to hardware acceleration.

The second accelerator that was implemented is a true L1

BLAS tile that implements a basic set of vector operations. In

our study, the MicroBlaze processor performing the vector

operations (one at a time) sets the baseline for the analysis for

both computation and power consumption. The FPU was then

dynamically brought online and the operations were performed

again using the accelerator. Finally, the FPU was disabled and

the L1 BLAS accelerator was brought online to perform the

same computations for a third time. Key parameters such as

configuration latency, computation speedup, and power

consumption were recorded for this experiment. Figure 4

shows the prototype system developed for this experiment and

the associated floorplan. For this experiment, the accelerators

were developed prior to run time (instead of dynamically

during run time). The accelerators were brought online by

partially reconfiguring a portion of the Virtex-6 FPGA. The

accelerators were disabled by programming the corresponding

region of the Virtex-6 FPGA with a bitstream containing data

corresponding to an un-configured FPGA state.

 The L1 BLAS vector operations that were implemented

for this study were double scalar vector product (DAXPY),

double product of magnitudes (DASUM), double dot product

(DDOT), double vector scalar product (DSCL), index of

vector maximum (IDAMAX), and index of vector minimum

(IDAMIN). On the MicroBlaze processor, these BLAS tasks

were performed using routines written using basic double

arithmetic instructions inherent to the processor instruction set.

The instructions used were double addition (ADDD), double

subtraction (SUBD), double multiplication (MULD), double

Figure 3. Graphical Depiction of Potential Performance Improvement of
Accelerator.

Figure 4. Prototype System Developed to Evaluate FPGA-Based BLAS
Accelerators.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

232

IJRITCC | January 2017, Available @ http://www.ijritcc.org

division (DIVD), and compare (CMP). Each of these scalar

operations were then implemented in hardware for the FPU

accelerator.

B. Experimental Results

The first experiment performed was to evaluate the

reconfiguration time, reconfiguration power consumption, and

computation power consumption for each of the three systems

in this work (MicroBlaze, MicroBlaze+FPU, and

MicroBlaze+BLAS). Figure 5 shows the results of this

experiment.In this plot, the power of the Virtex-6 FPGA was

measured as it ran the BLAS operations continuously in each

of the three test conditions (labeled 1, 2, and 3 in the plot) and

also as the FPGA was reconfigured. The reconfigurations

included a full FPGA configuration in addition to every

possible accelerator configuration. In this plot the “1.0V V6

Power” is the internal core power for the Virtex-6 while the

“3.3 V Power” is the Virtex-6 I/O power. During a

reconfiguration (full or partial), the core power drops to its

quiescent state while the I/O power increases as the bitstream

is driven in. This experiment showed a variety of both

intuitive and non-intuitive items. First, the operating power

consumption was as expected with the MicrBlaze

configuration consuming the least (1) and the

MicroBlaze+FPA (2) and MicroBlaze+BLAS (3)

configurations consuming the most. Also shown is a

MicroBlaze+FPU+BLAS configuration. Note that the

MicroBlaze+FPU+BLAS was not a valid operating mode but

just measured as a validity check of the experiment setup. The

second, less intuitive item of note was that the power

consumption during partial reconfiguration was significantly

higher (10% to 15%) than during operation. This indicates

that there will be a breakeven point with respect to power

efficiency for the proposed architecture in order to overcome

the increased power consumption associated with partial

reconfiguration. The final item of interest was the

reconfiguration time of the accelerator tiles. This was

measured nominally at 233 ms. Again, this non-negligible

amount indicates that there will be a breakeven point with

respect to computation performance for the proposed

architecture in order to overcome this latency.

 Table 1 shows the time and the power consumption during

the reconfiguration procedures for the Virtex-6 FPGA. The

size of the PR tiles in this experiment are all approximately

33% of the fabric. The time to perform PR consists of the time

to read from an SD card that contains the PR bitstream files

plus the time to write to the FPGA. The time to perform a full

configuration of the FPGA consists of the time to read from

the Xilinx platform flash memory device plus the time to write

to the FPGA. There is not a linear mapping between the PR

size and the percentage of the FPGA that is programmed. For

example, the PR of ~33% of the FPGA takes 233ms; however,

the full configuration of the FPGA does not take 3*233ms

(i.e., 100%). This is due to the programming for PR being

accomplished using a parallel interface in our system while the

full configuration uses a serial interface.

TABLE1. FPGA Configuration Time and Power.

 Time (sec) Power (W)

Full Configuration 2.139 0.119

Partial Reconfiguration (PR) 0.233 0.089

 Table 2 lists the power consumption while computing the

BLAS operations for each of the three architectures studied in

this work. Also provided for reference is the power

Figure 5. Prototype Empirical Results for Power Consumption and Reconfiguration Latency.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

233

IJRITCC | January 2017, Available @ http://www.ijritcc.org

consumption of the FPGA when unprogrammed. Note that the

FPU and BLAS tiles are mutually exclusive under normal

operation. When not in use, the tile resources are configured

back to their original, unconfigured state to reduce power.

TABLE 2. Computation Power Consumption

 Power (W) ∆ Power (W)

Un-programmed FPGA 410 m -

MicroBlaze only 900 m + 490 m

MicroBlaze + FPU Tile 950 m + 50 m

MicroBlaze + BLAS Tile 970 m + 70 m

 The primary analysis of interest when considering power

efficiency is comparing how much energy it takes for each of

the systems to compute the same number of BLAS operations.

We setup an experiment to perform the BLAS operations

mentioned above on a set of data that was swept in size. We

defined the variable N as the number of operations computed

in order to average the computation time across a set of

different BLAS primitives. We then measured the time for

each system to complete the computation. The first set of

computations was performed by the MicroBlaze using its

inherent instruction set. Next, the FPGA was partially

reconfigured to bring on the FPU accelerator and the same

operations were performed but with the assistance of the

accelerator. At the end of the operations, the accelerator tile

was unprogrammed and the time for the computation was

recorded. Using this empirical approach, the partial

reconfiguration time in addition to the communication time

with the accelerator was accounted for. Finally, the L1 BLAS

accelerator was brought online to perform the same operations.

This allowed a comparison between the three configurations to

be recorded in a single run. This was repeated for a sweep of

vector sizes.

The computation time for the general purpose, MicroBlaze

system is denoted as tGP and the power usage is denoted by

PGP(taken from table II). The total energy used by the

MicroBlaze system to complete N operations is then found by

multiplying the power (W=J/s) by the computation time (s) to

find the total number of Joules used. Equation 1 gives the

calculation of MicroBlaze energy based on the power

consumption and computation time.

𝐸𝐺𝑃 = 𝑃𝐺𝑃 ∙ 𝑡𝐺𝑃 (1)

 The energy used by the accelerated systems needs to

consider additional procedures. First, the movement of data

from the host processor to the accelerator after instantiated is

included in the computation time measurement (tACC). Second,

the energy required for partial reconfiguration is simply the

power used (PPR) multiplied by the reconfiguration time (tPR).

This quantity is a constant and independent of N. Equation 2

gives the calculation of the accelerated energy usage.

𝐸𝐴𝐶𝐶 = 𝑃𝐴𝐶𝐶 ∙ 𝑡𝐴𝐶𝐶 + 𝑃𝑃𝑅 ∙ 𝑡𝑃𝑅 (2)

 Figure 6 shows the energy usage comparison of the three

systems as the number of operations is swept. This plot

illustrates that for a small number of operations, the

MicroBlaze system has better energy efficiency than the

accelerated configurations. This is because for a small number

of operations, the higher power consumed by the accelerators,

plus the additional power used during partial reconfiguration

and data movement, dominates their overall energy usage.This

plot shows an inflection point around 90,000 operations where

the accelerated systems become more energy efficient than the

MicroBlaze system. This occurs when the reduced time of the

accelerated computation outweighs the cost of using a higher

power computational element even after including PR power.

 The next analysis that was performed was calculating the

speedup that was achieved by the accelerators. The speedup is

the ratio of the baseline system’s computation time (tcomp-old)

over the accelerated system’s computation time (tcomp-new). A

speedup less than 1 indicates a loss of performance and a

speedup ratio greater than 1 is an improvement in system

performance. The baseline system’s computation time is tGP.

The accelerated computation time is the actual computation

and data movement time (tACC) plus the PR time to bring on

the accelerator (tPR). Equation 3 gives the calculation of

speedup.

Figure 6. Energy Usage vs. the Number of Operations between the MicroBlaze baseline and Two Accelerator Configurations.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

234

IJRITCC | January 2017, Available @ http://www.ijritcc.org

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑐𝑜𝑚𝑝 −𝑜𝑙𝑑

𝑡𝑐𝑜𝑚𝑝 −𝑛𝑒𝑤
=

𝑡𝐺𝑃

𝑡𝐴𝐶𝐶 +𝑡𝑃𝑅
(3)

 Figure 7 shows the speedup achieved by the accelerators

versus the total number of operations.This plot clearly shows

the inflection point between where the accelerator

performance is dominated by data movement and the partial

reconfiguration time and where the increased computational

ability of the accelerators becomes dominant. This inflection

point occurs around 100,000 operations. This plot also shows

how the BLAS accelerator achieves a higher speedup

compared to a simple scalar accelerator (i.e., the FPU). This

improved performance is due to the optimal hardware

configuration of the BLAS tile when performing the vector

operations. This improved performance also only occurs for

large enough vectors in which the improvement outweighs the

reconfiguration latency.

IV. FUTURE WORK

 One of the pressing issues in modern computation is the

latency of data movement between memory and the actual

processing hardware. In the study presented in this paper, all

data was transferred to memory within a single FPGA device.

This set an upper bound on the size of the maximum dataset

that could be evaluated in addition to only providing latency

numbers for on-chip data movement. In order to more fully

understand the potential impact that real-time, reconfigurable,

BLAS accelerators can have on scientific computing,

experiments must be conducted on datasets that span large

numbers of FPGA-based accelerator cards. This will provide

more insight into how chip-to-chip and card-to-card data

movement latency impacts the computation. It is also

important that this study be conducted empirically since

theoretical calculations often don’t consider all of the

implementation details that impact performance.

V. CONCLUSION

 This paper presented the motivation for creating BLAS

hardware accelerators as real-time, reconfigurable tiles on

Field Programmable Gate Arrays. By dynamically bringing on

custom BLAS accelerators, the optimal hardware

configuration can be obtained for the computation and the

massive parallelism of FPGA hardware can be exploited. We

presented a prototype system that implemented BLAS

accelerators as on-chip, partially reconfigurable tiles. For this

system, we measured and presented information on the

reconfiguration time and power consumption, power

efficiency, and speedup compared to a traditional, general-

purpose computation. Our empirical data showed that the

power consumption of the partial reconfiguration was

considerable and impacted the inflection point for the power

efficiency comparison. Our experiment also demonstrated that

BLAS accelerator approach achieved a significant speedup

compared to a general-purpose system, even when augmented

with a hardware floating-point-unit.

ACKNOWLEDGMENTS

 The authors wish to thank NASA for supporting this

research. This work was supported in part by grants

(NNX10AN32A, NNX10AN91A, NNX12AM50G,

NNX13AR03A, and NNX14AL03A) from NASA.

REFERENCES

[1] "eXtreme Scale Computing Initiative," Pacific Northwest

National Laboratory, [Online]. Available:

http://xsci.pnnl.gov/pdf/XSCI_brochure.pdf

[2] B. Bishop, "Lawrence Livermore researchers awarded a billion

supercomputer core hours," Lawrence Livermore National

Laboratory Press Release, Nov. 2013, [Online], Available:

https://www.llnl.gov/news/newsreleases/2013/Nov/NR-13-11-

05.html#.UsGC0PRDtyS.

[3] "TeraGrid-to-XSEDE Transition," Extreme Science and

Engineering Discovery Environment (ESEDE), Nov. 2011,

[Online], Available:

https://www.xsede.org/documents/10157/169907/TG-XSEDE-

transition.pdf.

[4] "Getting Up To Speed, The Future of Supercomputing,"

Graham, S.L. Snir, M., Patterson, C.A., (eds), National

Research Council of the National Academies, National

Academies Press, 2004, ISBN 0-309-09502-6

Figure 7. Speedup vs. the Number of Operations between the MicroBlaze baseline and Two Accelerator Configurations.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

235

IJRITCC | January 2017, Available @ http://www.ijritcc.org

[5] "Cyberinfrastructure Framework for the 21st Century - Science

and Engineering (CIF21)," FY 2012 NSF Budget Request to

Congress, National Science Foundation, [Online], Available:

http://www.nsf.gov/about/budget/fy2012/pdf/40_fy2012.pdf.

[6] M. Gokhale, "Extreme Scale Challenges - Can Reconfigurable

Computing come to the rescue?," in Proc. ReConFig 2013,

International Conf. on, Dec 9-11, 2013.

[7] G. Bell, J. Gray, A. Szalay, "Petascale Computational

Systems," Computer, pp. 110-112, Jan. 2006.

[8] W. Gropp, D. Kaushik, D. Keyes, and B. Smith, "Toward

realistic performance bounds for implicit CFD codes,"

Proceedings of Parallel CFD’99. Elsevier, 1999.

[9] V. Eijkhout, "Introduction to High Performance Scientific

Computing," Creative Commons Attribution 3.0, USA, ISBN:

9781257992546, June 2013.

[10] L.D. Foskick, E.R. Jessup, C. Schauble, G.Domik,

"Introduction to High Performance Scientific Computing: 1st

Edition," MIT Press, ISBN: 9780262061810, April 1996.

[11] J. W. Demmel, Applied Numerical Linear Algebra.

Philadelphia, PA: SIAM, 1997.

[12] R. Hanson, F. Krogh, and C. Lawson, “A proposal for standard

linear algebra subprograms," ACMSIGNUM Newslett., vol. 8,

no. 16, p. 16, 1973.

[13] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic linear

algebra subprograms for Fortran usage," ACMTrans. Math.

Softw., vol. 5, no. 3, pp. 308–323, 1979.

[14] J. Dongarra, J. D. Croz, S. Hammarling, and R. Hanson,

“Algorithm 656: An extended set of basic linear algebra

subprograms: Model implementation and test programs," ACM

Trans. Math. Softw., vol. 14, no. 1, pp. 18–32, 1988.

[15] J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling, “A set of

level 3 basic linear algebra subprograms," ACM Trans. Math.

Software., vol. 16, no. 1, pp. 1–17, 1990.

[16] J. Demmel, et. al., "Self-Adapting Linear Algebra Algorithms

and Software," Proceedings of the IEEE , vol.93, no.2,

pp.293,312, Feb. 2005.

[17] J.J. Dongarra, J.R. Bunch, C.B. Moler, G.W. Stewart,

"LINPACK Users' Guide," SIAM Philadelphia, 1979.

[18] B. Smith, J. Boyle, J. Dongarra, B. Garbow, Y. Ikebe, V.

Klema, C. Moler, "Matrix Eigensystem Routines, EISPACK

Guide," Lecture Notes in Computer Science, Volume 6,

Springer Verlag, 1976.

[19] E. Anderson, et. al., “LAPACK User’s Guide," 3rd Edition,

Aug. 1999.

[20] D.W. Walker, "An MPI version of the BLACS," Scalable

Parallel Libraries Conference, Proceedings of the, pp.129-146,

Oct 12-14, 1994.

[21] S.L. Blackford, et al, "ScaLAPACK: A Portable Linear

Algebra Library for Distributed Memory Computers - Design

Issues and Performance," Supercomputing, 1996.

[22] “Basic Linear Algebra Subprograms Technical (BLAST)

Forum Standard," [Online]. Available:

http://www.netlib.org/blas/blast-forum/, January 25, 2001.

[23] S. Blackford, et. al., “An Updated Set of Basic Linear Algebra

Subprograms (BLAS)," ACM Transactions on Mathematical

Software, Vol. 28, No. 2, June 2002.

[24] J. Choi, J.J. Dongarra, S. Ostrouchov, A. Petitet, D.W. Walker

and R.C. Whaley, "A Proposal for a Set of Parallel Basic

Linear Algebra Subprograms," Technical Report CS-95-292,

Department of Computer Science, University of Tennessee,

Knoxville, May 1995.

[25] K. Goto, et al, “High-performance implementation of the level-

3 BLAS," ACM Trans. Math. Softw., vol. 35, no. 1, pp. 1–14,

2008.

[26] K. Yotov, L. Xiaoming, G. Ren, M.J. Garzaran, D. Padua, K.

Pingali, P. Stodghill, "Is Search Really Necessary to Generate

High-Performance BLAS?," Proceedings of the IEEE , vol.93,

no.2, pp.358-386, Feb. 2005.

[27] M.I. Soliman, "Performance evaluation of multi-core intel xeon

processors on basic linear algebra subprograms," Computer

Engineering & Systems, 2008. ICCES 2008. International

Conference on, pp.3-9, Nov. 25-27, 2008.

[28] Reddy, A. Lastovetsky, P. Alonso, "Heterogeneous PBLAS:

Optimization of PBLAS for Heterogeneous Computational

Clusters," Parallel and Distributed Computing, 2008. ISPDC

'08. International Symposium on pp.73-80, July 1-5, 2008.

[29] J.G. Siek, I. Karlin, E.R. Jessup, "Build to order linear algebra

kernels," Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, pp.1,8, April 14-18,

2008.

[30] G. Belter, E.R. Jessup, I. Karlin, J.G. Siek, "Automating the

generation of composed linear algebra kernels," High

Performance Computing Networking, Storage and Analysis,

Proceedings of the Conference on, pp.1,12, Nov. 14-20, 2009.

[31] E.R. Jessup, S.C.Bernstein, B. Norris, J. Hossain, "Lighthouse:

A User-Centered Web Interface to Matrix Algebra Software,"

[Online]. Available: http://lighthouse-

taxonomy.googlecode.com/files/lighthouse.pdf

[32] A.X. Duchateau,D. Padua, D. Barthou, "Hydra: Automatic

algorithm exploration from linear algebra equations," Code

Generation and Optimization (CGO), 2013 IEEE/ACM

International Symposium on, pp.1-10, Feb. 23-27, 2013.

[33] A.S. Szalay, et al, “GrayWulf: Scalable Clustered Architecture

for Data Intensive Computing," Microsoft Research, Microsoft

Corporation, Tech. Rep. MSR-TR-2008-187, Sept. 2008,

[Online]. Available:

http://research.microsoft.com/pubs/79429/GrayWulf_Hardware

_FINAL.doc

[34] A. Pedram, S.Z. Gilani, S.K. Nam, R. van de Geijn, M.

Schulte, A. Gerstlauer, "A Linear Algebra Core Design for

Efficient Level-3 BLAS," Application-Specific Systems,

Architectures and Processors (ASAP), 2012 IEEE 23rd

International Conference on, pp.149-152, July 9-11, 2012.

[35] Lawrence Latif, " Intel reveals Xeon Phi architecture details at

Hotchips", The Inquirer, [Available], Online:

www.theinquirer.net, August 31, 2012.

[36] “What is GPU Accelerated Computing”, NVIDIA Corp.,

[Available], Online: http://www.nvidia.com/object/What-is-

GPU-Computing.html.

[37] V. Volkov and J. Demmel, “Benchmarking GPUs to tune dense

linear algebra," SC 2008, 2008.

[38] P. Hursky, M.B. Porter, "Accelerating underwater acoustic

propagation modeling using general purpose graphic

processing units," OCEANS 2011, pp.1-6, Sept. 19-22, 2011.

[39] J. Muramatsu, S. Zhang, Y. Yamamoto, "Acceleration of

Hessenberg Reduction for Nonsymmetric Eigenvalue Problems

Using GPU," Networking and Computing (ICNC), 2010 First

International Conference on, pp.215-219, Nov. 17-19, 2010.

[40] V. Allada, T. Benjegerdes, B. Bode, "Performance analysis of

memory transfers and GEMM subroutines on NVIDIA Tesla

GPU cluster," Cluster Computing and Workshops, 2009.

CLUSTER '09. IEEE International Conference on, pp.1-9, Aug.

31 2009.

[41] M. Nakata, Y. Takao, S. Noda, R. Himeno, "A Fast

Implementation of Matrix-matrix Product in Double-double

Precision on NVIDIA C2050 and Application to Semidefinite

Programming," Networking and Computing (ICNC), 2012

Third International Conference on, pp.68-75, Dec. 5-7, 2012

[42] D. Mukunoki, D. Takahashi, "Implementation and Evaluation

of Triple Precision BLAS Subroutines on GPUs," Parallel and

Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2012 IEEE 26th International, pp.1378-1386, May

21-25, 2012.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 227 – 236

236

IJRITCC | January 2017, Available @ http://www.ijritcc.org

[43] D. Strenski, J. Simkins, R. Walke, R. Wittig, “Revaluation

FPGAs for 64-bit Floating-Point Calculations," HPC Wire,

May 14, 2008.

[44] R. Sundararajan, “High Performance Computing Using

FPGAs,” Xilinx Corporation, White Paper, No. WP375, Sept.

10, 2010.

[45] N. Mehta, “Xilinx UltraScale Architecture for High-

Performance Smarter Systems”, Xilinx Corporation, White

Paper, No. WP434, Dec. 10, 2013.

[46] K. K. Matam, L. Hoang Le; V.K. Prasanna, "Evaluating energy

efficiency of floating point matrix multiplication on FPGAs,"

High Performance Extreme Computing Conference (HPEC),

2013 IEEE, pp.1,6, Sept. 10-12, 2013.

[47] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance

and energy comparison of fpgas, gpus, and multicores for

sliding-window applications," in Proceedings of the

ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, ser. FPGA ’12. New York, NY,

USA: ACM, 2012, pp. 47–56. [Online]. Available:

http://doi.acm.org/10.1145/2145694.2145704

[48] O. Storaasli, R.C. Singleterry, and S. Brown, "Scientific

Computations on a NASA Reconfigurable Hypercomputer,"

Proc. Fifth Ann. Int’l Conf. Military and Aerospace

Programmable Logic Devices, Sept. 2002.

[49] K.D. Underwood and K.S. Hemmert, "Closing the Gap: CPU

and FPGA Trends in Sustainable Floating-Point BLAS

Performance," Proc. 12th Ann. IEEE Symp. Field-

Programmable Custom Computing Machines, Apr. 2004.

[50] M. Smith, J. Vetter, and X. Liang, "Accelerating Scientific

Applications with the SRC-6 Reconfigurable Computer:

Methodologies and Analysis," Proc. 19th IEEE Int’l Parallel

and Distributed Processing Symp., Apr. 2005.

[51] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, "A Quantitative

Analysis of the Speedup Factors of FPGAs over Processors,"

Proc. 12th ACM/SIGDA Int’l Symp. Field Programmable Gate

Arrays, pp. 162-170, Feb. 2004.

[52] V. Aggarwal, A. George, and K. Slatton, "Reconfigurable

Computing with Multiscale Data Fusion for Remote Sensing,"

Proc. 14th ACM/SIGDA Int’l Symp. Field Programmable Gate

Arrays, p. 235, Feb. 2006.

[53] S. Bajracharya, C. Shu, K. Gaj, and T. El-Ghazawi,

"Implementation of Elliptic Curve Cryptosystems over gfð2nÞ

in Optimal Normal Basis on a Reconfigurable Computer,"

Proc. 12th ACM/SIGDA Int’l Symp. Field Programmable Gate

Arrays, Feb. 2004.

[54] D.A. Buell and J.P. Davis, "Reconfigurable Computing

Applied to Problems in Communications Security," Proc. Fifth

Ann. Int’l Conf. Military and Aerospace Programmable Logic

Devices, Sept. 2002.

[55] A. Koohi, N. Bagherzadeh, and C. Pan, "A Fast Parallel Reed-

Solomon Decoder on a Reconfigurable Architecture," Proc.

First IEEE/ACM/IFIP Int’l Conf. Hardware/Software Codesign

and System Synthesis, Oct. 2003.

[56] L. Zhuo and V. Prasanna, “High-performance designs for linear

algebra operations on reconfigurable hardware," IEEE Trans.

on Computers, vol. 57, no. 8, 2008.

[57] T. El-Ghazawi, E. El-Araby, H. Miaoqing, K. Gaj, V.

Kindratenko, D. Buell, D., "The Promise of High-Performance

Reconfigurable Computing," Computer , vol.41, no.2, pp.69-

76, Feb. 2008.

[58] Cray Inc., http://www.cray.com/, 2008.

[59] SRC Computers, Inc., http://www.srccomp.com/, 2008.

[60] Silicon Graphics, Inc., http://www.sgi.com/, 2008.

[61] S. Kestur, J. D. Davis, and O. Williams, “Blas comparison on

fpga, cpu and gpu," in Proceedings of the 2010 IEEE Annual

Symposium on VLSI, ser. ISVLSI ’10. Washington, DC, USA:

IEEE Computer Society, 2010, pp. 288–293. [Online].

Available: http://dx.doi.org/10.1109/ISVLSI.2010.84.

[62] E. S. Chungz, J. D. Davisz, and S. Kestury, “An fpga drop-in

replacement for universal matrix-vector multiplication," in

Workshop on the Intersections of Computer Architecture and

Reconfigurable Logic. Microsoft Research Silicon Valley Dept.

of Computer Science and Engineering, The Pennsylvania State

University, 2012.

[63] Z. Jovanovic and V. Milutinovic, “Fpga accelerator for

floating-point matrix multiplication," Computers Digital

Techniques, IET, vol. 6, no. 4, pp. 249–256, 2012.

[64] W. Zhang, V. Betz, and J. Rose, “Portable and scalable fpga-

based acceleration of a direct linear system solver," ACM

Trans. Reconfigurable Technol. Syst., vol. 5, no. 1, Mar. 2012.

[65] A. Agne, et al. 2014. ReconOS: An Operating System

Approach for Reconfigurable Computing," IEEE Micro.

vol. 34. no. 1. pp. 60-71. Jan.-Feb. 2014. DOI:

10.1109/MM.2013.110.

[66] D. Andrews. 2014. Operating Systems Research for

Reconfigurable Computing. IEEE Micro. vol. 34. no. 1.

pp. 54-58. Jan.-Feb. 2014. DOI: 10.1109/MM.2014.1.

