696 research outputs found

    SCALABLE MULTI-HOP DATA DISSEMINATION IN VEHICULAR AD HOC NETWORKS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio channel bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid changes in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate traffic density, so as to manage data dissemination accordingly. In this dissertation, we specifically aim at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    A native content discovery mechanism for the information-centric networks

    Get PDF
    Recent research has considered various approaches for discovering content in the cache-enabled nodes of an Autonomous System (AS) to reduce the costly inter-AS traffic. Such approaches include i) searching content opportunistically (on-path) along the default intra-AS path towards the content origin for limited gain, and ii) actively coordinate nodes when caching content for significantly higher gains, but also higher overhead. In this paper, we try to combine the merits of both worlds by using traditional opportunistic caching mechanisms enhanced with a lightweight content discovery approach. Particularly, a content retrieved through an inter-AS link is cached only once along the intra-AS delivery path to maximize network storage utilization, and ephemeral forwarding state to locate temporarily stored content is established opportunistically at each node along that path during the processing of Data packets. The ephemeral forwarding state either points to the arriving or the destination face of the Data packet depending on whether the content has already been cached along the path or not. The challenge in such an approach is to appropriately use and maintain the ephemeral forwarding state to minimize inter-AS content retrieval, while keeping retrieval latency and overhead at acceptable levels. We propose several forwarding strategies to use and manage ephemeral state and evaluate our mechanism using an ISP topology for various system parameters. Our results indicate that our opportunistic content discovery mechanism can achieve near-optimal performance and significantly reduce inter-AS traffic

    An Online Decision-Theoretic Pipeline for Responder Dispatch

    Full text link
    The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time with a drastic reduction in computational time.Comment: Appeared in ICCPS 201

    Web Replica Hosting Systems

    Get PDF
    corecore