327 research outputs found

    Evolutionary Multi-objective Scheduling for Anti-Spam Filtering Throughput Optimization

    Get PDF
    This paper presents an evolutionary multi-objective optimization problem formulation for the anti-spam filtering problem, addressing both the classification quality criteria (False Positive and False Negative error rates) and email messages classification time (minimization). This approach is compared to single objective problem formulations found in the literature, and its advantages for decision support and flexible/adaptive anti-spam filtering configuration is demonstrated. A study is performed using the Wirebrush4SPAM framework anti-spam filtering and the SpamAssassin email dataset. The NSGA-II evolutionary multi-objective optimization algorithm was applied for the purpose of validating and demonstrating the adoption of this novel approach to the anti-spam filtering optimization problem, formulated from the multi-objective optimization perspective. The results obtained from the experiments demonstrated that this optimization strategy allows the decision maker (anti-spam filtering system administrator) to select among a set of optimal and flexible filter configuration alternatives with respect to classification quality and classification efficiency

    A discrete hidden Markov model for SMS spam detection

    Get PDF
    Many machine learning methods have been applied for short messaging service (SMS) spam detection, including traditional methods such as naive Bayes (NB), vector space model (VSM), and support vector machine (SVM), and novel methods such as long short-term memory (LSTM) and the convolutional neural network (CNN). These methods are based on the well-known bag of words (BoW) model, which assumes documents are unordered collection of words. This assumption overlooks an important piece of information, i.e., word order. Moreover, the term frequency, which counts the number of occurrences of each word in SMS, is unable to distinguish the importance of words, due to the length limitation of SMS. This paper proposes a new method based on the discrete hidden Markov model (HMM) to use the word order information and to solve the low term frequency issue in SMS spam detection. The popularly adopted SMS spam dataset from the UCI machine learning repository is used for performance analysis of the proposed HMM method. The overall performance is compatible with deep learning by employing CNN and LSTM models. A Chinese SMS spam dataset with 2000 messages is used for further performance evaluation. Experiments show that the proposed HMM method is not language-sensitive and can identify spam with high accuracy on both datasets

    The 9th Conference of PhD Students in Computer Science

    Get PDF

    A Hybrid Random Forest based Support Vector Machine Classification Supplemented by Boosting

    Get PDF
    This paper presents an approach to classify remote sensed data using a hybrid classifier. Random forest, Support Vector machines and boosting methods are used to build the said hybrid classifier. The central idea is to subdivide the input data set into smaller subsets and classify individual subsets. The individual subset classification is done using support vector machines classifier. Boosting is used at each subset to evaluate the learning by using a weight factor for every data item in the data set. The weight factor is updated based on classification accuracy. Later the final outcome for the complete data set is computed by implementing a majority voting mechanism to the individual subset classification outcomes

    Context Mining with Machine Learning Approach: Understanding, Sensing, Categorizing, and Analyzing Context Parameters

    Get PDF
    Context is a vital concept in various fields, such as linguistics, psychology, and computer science. It refers to the background, environment, or situation in which an event, action, or idea occurs or exists. Categorization of context involves grouping contexts into different types or classes based on shared characteristics. Physical context, social context, cultural context, temporal context, and cognitive context are a few categories under which context can be divided. Each type of context plays a significant role in shaping our understanding and interpretation of events or actions. Understanding and categorizing context is essential for many applications, such as natural language processing, human-computer interaction, and communication studies, as it provides valuable information for interpretation, prediction, and decision-making. In this paper, we will provide an overview of the concept of context and its categorization, highlighting the importance of context in various fields and applications. We will discuss each type of context and provide examples of how they are used in different fields. Finally, we will conclude by emphasizing the significance of understanding and categorizing context for interpretation, prediction, and decision-making

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    Dynamic adversarial mining - effectively applying machine learning in adversarial non-stationary environments.

    Get PDF
    While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race between the system designer and the attackers. Any solution designed for such a domain needs to take into account an active adversary and needs to evolve over time, in the face of emerging threats. We term this as the ‘Dynamic Adversarial Mining’ problem, and the presented work provides the foundation for this new interdisciplinary area of research, at the crossroads of Machine Learning, Cybersecurity, and Streaming Data Mining. We start with a white hat analysis of the vulnerabilities of classification systems to exploratory attack. The proposed ‘Seed-Explore-Exploit’ framework provides characterization and modeling of attacks, ranging from simple random evasion attacks to sophisticated reverse engineering. It is observed that, even systems having prediction accuracy close to 100%, can be easily evaded with more than 90% precision. This evasion can be performed without any information about the underlying classifier, training dataset, or the domain of application. Attacks on machine learning systems cause the data to exhibit non stationarity (i.e., the training and the testing data have different distributions). It is necessary to detect these changes in distribution, called concept drift, as they could cause the prediction performance of the model to degrade over time. However, the detection cannot overly rely on labeled data to compute performance explicitly and monitor a drop, as labeling is expensive and time consuming, and at times may not be a possibility altogether. As such, we propose the ‘Margin Density Drift Detection (MD3)’ algorithm, which can reliably detect concept drift from unlabeled data only. MD3 provides high detection accuracy with a low false alarm rate, making it suitable for cybersecurity applications; where excessive false alarms are expensive and can lead to loss of trust in the warning system. Additionally, MD3 is designed as a classifier independent and streaming algorithm for usage in a variety of continuous never-ending learning systems. We then propose a ‘Dynamic Adversarial Mining’ based learning framework, for learning in non-stationary and adversarial environments, which provides ‘security by design’. The proposed ‘Predict-Detect’ classifier framework, aims to provide: robustness against attacks, ease of attack detection using unlabeled data, and swift recovery from attacks. Ideas of feature hiding and obfuscation of feature importance are proposed as strategies to enhance the learning framework\u27s security. Metrics for evaluating the dynamic security of a system and recover-ability after an attack are introduced to provide a practical way of measuring efficacy of dynamic security strategies. The framework is developed as a streaming data methodology, capable of continually functioning with limited supervision and effectively responding to adversarial dynamics. The developed ideas, methodology, algorithms, and experimental analysis, aim to provide a foundation for future work in the area of ‘Dynamic Adversarial Mining’, wherein a holistic approach to machine learning based security is motivated
    corecore