23,336 research outputs found

    Occupational Fraud Detection Through Visualization

    Full text link
    Occupational fraud affects many companies worldwide causing them economic loss and liability issues towards their customers and other involved entities. Detecting internal fraud in a company requires significant effort and, unfortunately cannot be entirely prevented. The internal auditors have to process a huge amount of data produced by diverse systems, which are in most cases in textual form, with little automated support. In this paper, we exploit the advantages of information visualization and present a system that aims to detect occupational fraud in systems which involve a pair of entities (e.g., an employee and a client) and periodic activity. The main visualization is based on a spiral system on which the events are drawn appropriately according to their time-stamp. Suspicious events are considered those which appear along the same radius or on close radii of the spiral. Before producing the visualization, the system ranks both involved entities according to the specifications of the internal auditor and generates a video file of the activity such that events with strong evidence of fraud appear first in the video. The system is also equipped with several different visualizations and mechanisms in order to meet the requirements of an internal fraud detection system

    DRSP : Dimension Reduction For Similarity Matching And Pruning Of Time Series Data Streams

    Get PDF
    Similarity matching and join of time series data streams has gained a lot of relevance in today's world that has large streaming data. This process finds wide scale application in the areas of location tracking, sensor networks, object positioning and monitoring to name a few. However, as the size of the data stream increases, the cost involved to retain all the data in order to aid the process of similarity matching also increases. We develop a novel framework to addresses the following objectives. Firstly, Dimension reduction is performed in the preprocessing stage, where large stream data is segmented and reduced into a compact representation such that it retains all the crucial information by a technique called Multi-level Segment Means (MSM). This reduces the space complexity associated with the storage of large time-series data streams. Secondly, it incorporates effective Similarity Matching technique to analyze if the new data objects are symmetric to the existing data stream. And finally, the Pruning Technique that filters out the pseudo data object pairs and join only the relevant pairs. The computational cost for MSM is O(l*ni) and the cost for pruning is O(DRF*wsize*d), where DRF is the Dimension Reduction Factor. We have performed exhaustive experimental trials to show that the proposed framework is both efficient and competent in comparison with earlier works.Comment: 20 pages,8 figures, 6 Table

    Evolving temporal association rules with genetic algorithms

    Get PDF
    A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty
    corecore