5,026 research outputs found

    Exploiting multimedia in creating and analysing multimedia Web archives

    No full text
    The data contained on the web and the social web are inherently multimedia and consist of a mixture of textual, visual and audio modalities. Community memories embodied on the web and social web contain a rich mixture of data from these modalities. In many ways, the web is the greatest resource ever created by human-kind. However, due to the dynamic and distributed nature of the web, its content changes, appears and disappears on a daily basis. Web archiving provides a way of capturing snapshots of (parts of) the web for preservation and future analysis. This paper provides an overview of techniques we have developed within the context of the EU funded ARCOMEM (ARchiving COmmunity MEMories) project to allow multimedia web content to be leveraged during the archival process and for post-archival analysis. Through a set of use cases, we explore several practical applications of multimedia analytics within the realm of web archiving, web archive analysis and multimedia data on the web in general

    A novel shape descriptor based on salient keypoints detection for binary image matching and retrieval

    Get PDF
    We introduce a shape descriptor that extracts keypoints from binary images and automatically detects the salient ones among them. The proposed descriptor operates as follows: First, the contours of the image are detected and an image transformation is used to generate background information. Next, pixels of the transformed image that have specific characteristics in their local areas are used to extract keypoints. Afterwards, the most salient keypoints are automatically detected by filtering out redundant and sensitive ones. Finally, a feature vector is calculated for each keypoint by using the distribution of contour points in its local area. The proposed descriptor is evaluated using public datasets of silhouette images, handwritten math expressions, hand-drawn diagram sketches, and noisy scanned logos. Experimental results show that the proposed descriptor compares strongly against state of the art methods, and that it is reliable when applied on challenging images such as fluctuated handwriting and noisy scanned images. Furthermore, we integrate our descripto

    Audio-visual football video analysis, from structure detection to attention analysis

    Get PDF
    Sport video is an important video genre. Content-based sports video analysis attracts great interest from both industry and academic ļ¬elds. A sports video is characterised by repetitive temporal structures, relatively plain contents, and strong spatio-temporal variations, such as quick camera switches and swift local motions. It is necessary to develop speciļ¬c techniques for content-based sports video analysis to utilise these characteristics. For an efļ¬cient and effective sports video analysis system, there are three fundamental questions: (1) what are key stories for sports videos; (2) what incurs viewerā€™s interest; and (3) how to identify game highlights. This thesis is developed around these questions. We approached these questions from two different perspectives and in turn three research contributions are presented, namely, replay detection, attack temporal structure decomposition, and attention-based highlight identiļ¬cation. Replay segments convey the most important contents in sports videos. It is an efļ¬cient approach to collect game highlights by detecting replay segments. However, replay is an artefact of editing, which improves with advances in video editing tools. The composition of replay is complex, which includes logo transitions, slow motions, viewpoint switches and normal speed video clips. Since logo transition clips are pervasive in game collections of FIFA World Cup 2002, FIFA World Cup 2006 and UEFA Championship 2006, we take logo transition detection as an effective replacement of replay detection. A two-pass system was developed, including a ļ¬ve-layer adaboost classiļ¬er and a logo template matching throughout an entire video. The ļ¬ve-layer adaboost utilises shot duration, average game pitch ratio, average motion, sequential colour histogram and shot frequency between two neighbouring logo transitions, to ļ¬lter out logo transition candidates. Subsequently, a logo template is constructed and employed to ļ¬nd all transition logo sequences. The precision and recall of this system in replay detection is 100% in a ļ¬ve-game evaluation collection. An attack structure is a team competition for a score. Hence, this structure is a conceptually fundamental unit of a football video as well as other sports videos. We review the literature of content-based temporal structures, such as play-break structure, and develop a three-step system for automatic attack structure decomposition. Four content-based shot classes, namely, play, focus, replay and break were identiļ¬ed by low level visual features. A four-state hidden Markov model was trained to simulate transition processes among these shot classes. Since attack structures are the longest repetitive temporal unit in a sports video, a sufļ¬x tree is proposed to ļ¬nd the longest repetitive substring in the label sequence of shot class transitions. These occurrences of this substring are regarded as a kernel of an attack hidden Markov process. Therefore, the decomposition of attack structure becomes a boundary likelihood comparison between two Markov chains. Highlights are what attract notice. Attention is a psychological measurement of ā€œnotice ā€. A brief survey of attention psychological background, attention estimation from vision and auditory, and multiple modality attention fusion is presented. We propose two attention models for sports video analysis, namely, the role-based attention model and the multiresolution autoregressive framework. The role-based attention model is based on the perception structure during watching video. This model removes reļ¬‚ection bias among modality salient signals and combines these signals by reļ¬‚ectors. The multiresolution autoregressive framework (MAR) treats salient signals as a group of smooth random processes, which follow a similar trend but are ļ¬lled with noise. This framework tries to estimate a noise-less signal from these coarse noisy observations by a multiple resolution analysis. Related algorithms are developed, such as event segmentation on a MAR tree and real time event detection. The experiment shows that these attention-based approach can ļ¬nd goal events at a high precision. Moreover, results of MAR-based highlight detection on the ļ¬nal game of FIFA 2002 and 2006 are highly similar to professionally labelled highlights by BBC and FIFA

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF
    • ā€¦
    corecore