5,471 research outputs found

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis

    Framework de Tomada de Decisão para Last-Mile Sustentável

    Get PDF
    The e-commerce growth, propelled by factors like globalization, urbanization, or the COVID-19 pandemic, has been raising the demand for logistic activities. This affects the entire supply chain, especially the last-mile, as it is considered the most ineffective part of the supply chain and a source of negative externalities. Although various solutions promise to alleviate these problems, understanding them and selecting the best has proven to be difficult due to conflicting criteria, multiple perspectives, and trade-offs. The vicissitudes of complex and sensitive urban contexts like historic centers also contribute to this difficulty. This work contributes an integrated framework that may assist the involved stakeholders in decision-making. To this end, this work is based on a three-part methodology. The extensive systematic literature review developed provided an integrated overview of this fragmented research area. This review confirmed the multidisciplinary nature of the topic, as there is an increasing number of studies conducted under very different perspectives. Furthermore, it was found that the economic dimension is the most considered; the most polluting countries contributed little to the research; and the solutions involve trade-offs. The literature review supported the definition of the hierarchical model that structures last-mile operations in historic centers. This model was evaluated by interviewing a group of experts. After integrating the experts’ feedback, the model was quantified by the same experts according to an AHP-TOPSIS approach. This quantification had as a case study the historic center of Porto, Portugal. The experts considered the three sustainability dimensions identically important. Air pollution was the most valued sub-criterion whereas Visual pollution was the least. All last-mile solutions considered in the model achieved similar results, therefore suggesting a combined distribution strategy. Nevertheless, the use of parcel lockers is the most favorable solution and seems adequate in Porto’s historic center.O crescimento do e-commerce, impulsionado por fatores como a globalização, a urbanização ou a pandemia de COVID-19, tem aumentado a procura por atividades logísticas. Isto afeta toda a cadeia de abastecimento, principalmente a última-milha, por ser considerada a parte mais ineficaz da cadeia de abastecimento e uma fonte de externalidades negativas. Embora existam várias soluções que prometem aliviar estes problemas, entendêlas e selecionar a melhor tem se provado difícil devido a critérios conflituosos, múltiplas perspetivas e trade-offs. As vicissitudes de contextos urbanos complexos e sensíveis como os centros históricos também contribuem para essa dificuldade. Este trabalho contribui um framework integrado que pode auxiliar os stakeholders envolvidos na tomada de decisão. Para este fim, este trabalho é baseado numa metodologia composta por três partes. A extensa revisão sistemática da literatura desenvolvida forneceu uma visão integrada desta área de investigação fragmentada. Esta revisão confirmou o caráter multidisciplinar do tema, pois há um número crescente de estudos conduzidos sob perspetivas muito diferentes. Além disso, verificou-se que a dimensão económica é a mais considerada; os países mais poluentes contribuíram pouco para a pesquisa; e as soluções envolvem trade-offs. A revisão da literatura suportou a definição do modelo hierárquico que estrutura as operações de última-milha em centros históricos. Este modelo foi avaliado entrevistando um grupo de experts. Após a integração do feedback dos experts, o modelo foi quantificado pelos mesmos de acordo com uma abordagem AHP-TOPSIS. Esta quantificação teve como caso de estudo o centro histórico do Porto, Portugal. Os experts consideraram as três dimensões da sustentabilidade identicamente importantes. O subcritério relativo à poluição atmosférica foi o mais valorizado, enquanto o menos foi o relativo à poluição visual. Todas as soluções de últimamilha consideradas no modelo alcançaram resultados semelhantes, sugerindo uma estratégia de distribuição combinada. No entanto, o uso de parcel lockers é a solução mais favorável e é aparentemente adequada para o centro histórico do Porto
    • …
    corecore