183,318 research outputs found

    Distributed Clustering in Cognitive Radio Ad Hoc Networks Using Soft-Constraint Affinity Propagation

    Get PDF
    Absence of network infrastructure and heterogeneous spectrum availability in cognitive radio ad hoc networks (CRAHNs) necessitate the self-organization of cognitive radio users (CRs) for efficient spectrum coordination. The cluster-based structure is known to be effective in both guaranteeing system performance and reducing communication overhead in variable network environment. In this paper, we propose a distributed clustering algorithm based on soft-constraint affinity propagation message passing model (DCSCAP). Without dependence on predefined common control channel (CCC), DCSCAP relies on the distributed message passing among CRs through their available channels, making the algorithm applicable for large scale networks. Different from original soft-constraint affinity propagation algorithm, the maximal iterations of message passing is controlled to a relatively small number to accommodate to the dynamic environment of CRAHNs. Based on the accumulated evidence for clustering from the message passing process, clusters are formed with the objective of grouping the CRs with similar spectrum availability into smaller number of clusters while guaranteeing at least one CCC in each cluster. Extensive simulation results demonstrate the preference of DCSCAP compared with existing algorithms in both efficiency and robustness of the clusters

    Multi-Layered Clustering for Power Consumption Profiling in Smart Grids

    Get PDF
    Open access publicationSmart Grids (SGs) have many advantages over traditional power grids as they enhance the way electricity is generated, distributed, and consumed by adopting advanced sensing, communication and control functionalities that depend on power consumption profiles of consumers. Clustering algorithms (e.g., centralized clustering) are used for profiling individual’s power consumption. Due to the distributed nature and ever growing size of SGs, it is predicted that massive amounts of data will be created. However, conventional clustering algorithms neither efficient enough nor scalable enough to deal with such amount of data. In addition, the cost for transferring and analyzing large amounts of data is expensive high both computationally and communicationally. This paper thus proposes a power consumption profiling model based on two levels of clustering. At the first level, local power consumption profiles are derived, which are then used by the second level in order to create a global power consumption profile. The followed approach reduces the communication and computation complexity of the proposed two level model and improves the privacy of consumers. We point out that having good knowledge of the local power profiles leads to more effective prediction model and cost-effective power pricing scheme, especially in a heterogeneous grid topology. In addition, the correlations between the local and global profiles can be used to localize/identify power consumption outliers. Simulation results illustrate that the proposed model is effective in reducing the computational complexity without much affecting its accuracy. The reduction in computational complexity is about 52% and the reduction in the communicational complexity is about 95% when compared to the centralized clustering approach

    Model-based clustering for online crisis identification in distributed computing

    Get PDF
    Abstract Distributed computing systems can suffer from occasional catastrophic violation of performance goals; due to the complexity of these systems, manual diagnosis of the cause of the crisis is prohibitive. Recognizing the recurrence of a problem automatically can lead to cause diagnosis and / or informed intervention. We frame this as an online clustering problem, where the labels (causes) of some of the previous crises may be known. We give an effective solution using model-based clustering based on a Dirichlet process mixture; the evolution of each crisis is modeled as a multivariate time series. We perform fully Bayesian inference on clusters, giving a method for efficient online computation. Such inferences allow for online expected-cost-minimizing decision making in the distributed computing context. We apply our methods to Microsoft's Exchange Hosted Services
    corecore