5 research outputs found

    Effective instruction prefetching via fetch prestaging

    Get PDF
    As technological process shrinks and clock rate increases, instruction caches can no longer be accessed in one cycle. Alternatives are implementing smaller caches (with higher miss rate) or large caches with a pipelined access (with higher branch misprediction penalty). In both cases, the performance obtained is far from the obtained by an ideal large cache with one-cycle access. In this paper we present cache line guided prestaging (CLGP), a novel mechanism that overcomes the limitations of current instruction cache implementations. CLGP employs prefetching to charge future cache lines into a set of fast prestage buffers. These buffers are managed efficiently by the CLGP algorithm, trying to fetch from them as much as possible. Therefore, the number of fetches served by the main instruction cache is highly reduced, and so the negative impact of its access latency on the overall performance. With the best CLGP configuration using a 4 KB I-cache, speedups of 3.5% (at 0.09 /spl mu/m) and 12.5% (at 0.045 /spl mu/m) are obtained over an equivalent fetch directed prefetching configuration, and 39% (at 0.09 /spl mu/m) and 48% (at 0.045 /spl mu/m) over using a pipelined instruction cache without prefetching. Moreover, our results show that CLGP with a 2.5 KB of total cache budget can obtain a similar performance than using a 64 KB pipelined I-cache without prefetching, that is equivalent performance at 6.4X our hardware budget.Peer ReviewedPostprint (published version

    Effective Instruction Prefetching via Fetch Prestaging

    No full text

    Effective Instruction Prefetching via Fetch Prestaging

    No full text
    As technological process shrinks and clock rate increases, instruction caches can no longer be accessed in one cycle. Alternatives are implementing smaller caches (with higher miss rate) or large caches with a pipelined access (with higher branch misprediction penalty). In both cases, the performance obtained is far from the obtained by an ideal large cache with one-cycle access. In this paper we present Cache Line Guided Prestaging (CLGP), a novel mechanism that overcomes the limitations of current instruction cache implementations. CLGP employs prefetching to charge future cache lines into a set of fast prestage buffers. These buffers are managed efficiently by the CLGP algorithm, trying to fetch from them as much as possible. Therefore, the number of fetches served by the main instruction cache is highly reduced, and so the negative impact of its access latency on the overall performance. With the best CLGP configuration using a 4 KB I-cache, speedups of 3.5 % (at 0.09µm) and 12.5 % (at 0.045µm) are obtained over an equivalent Fetch Directed Prefetching configuration, and 39 % (at 0.09µm) and 48 % (at 0.045µm) over using a pipelined instruction cache without prefetching. Moreover, our results show that CLGP with a 2.5 KB of total cache budget can obtain a similar performance than using a 64 KB pipelined I-cache without prefetching, that is equivalent performance at 6.4X our hardware budget. 1

    Effective instruction prefetching via fetch prestaging

    No full text
    As technological process shrinks and clock rate increases, instruction caches can no longer be accessed in one cycle. Alternatives are implementing smaller caches (with higher miss rate) or large caches with a pipelined access (with higher branch misprediction penalty). In both cases, the performance obtained is far from the obtained by an ideal large cache with one-cycle access. In this paper we present cache line guided prestaging (CLGP), a novel mechanism that overcomes the limitations of current instruction cache implementations. CLGP employs prefetching to charge future cache lines into a set of fast prestage buffers. These buffers are managed efficiently by the CLGP algorithm, trying to fetch from them as much as possible. Therefore, the number of fetches served by the main instruction cache is highly reduced, and so the negative impact of its access latency on the overall performance. With the best CLGP configuration using a 4 KB I-cache, speedups of 3.5% (at 0.09 /spl mu/m) and 12.5% (at 0.045 /spl mu/m) are obtained over an equivalent fetch directed prefetching configuration, and 39% (at 0.09 /spl mu/m) and 48% (at 0.045 /spl mu/m) over using a pipelined instruction cache without prefetching. Moreover, our results show that CLGP with a 2.5 KB of total cache budget can obtain a similar performance than using a 64 KB pipelined I-cache without prefetching, that is equivalent performance at 6.4X our hardware budget.Peer Reviewe

    Fourth NASA Goddard Conference on Mass Storage Systems and Technologies

    Get PDF
    This report contains copies of all those technical papers received in time for publication just prior to the Fourth Goddard Conference on Mass Storage and Technologies, held March 28-30, 1995, at the University of Maryland, University College Conference Center, in College Park, Maryland. This series of conferences continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include new storage technology, stability of recorded media, performance studies, storage system solutions, the National Information infrastructure (Infobahn), the future for storage technology, and lessons learned from various projects. There also will be an update on the IEEE Mass Storage System Reference Model Version 5, on which the final vote was taken in July 1994
    corecore