29,502 research outputs found

    Deep Networks for Compressed Image Sensing

    Full text link
    The compressed sensing (CS) theory has been successfully applied to image compression in the past few years as most image signals are sparse in a certain domain. Several CS reconstruction models have been recently proposed and obtained superior performance. However, there still exist two important challenges within the CS theory. The first one is how to design a sampling mechanism to achieve an optimal sampling efficiency, and the second one is how to perform the reconstruction to get the highest quality to achieve an optimal signal recovery. In this paper, we try to deal with these two problems with a deep network. First of all, we train a sampling matrix via the network training instead of using a traditional manually designed one, which is much appropriate for our deep network based reconstruct process. Then, we propose a deep network to recover the image, which imitates traditional compressed sensing reconstruction processes. Experimental results demonstrate that our deep networks based CS reconstruction method offers a very significant quality improvement compared against state of the art ones.Comment: This paper has been accepted by the IEEE International Conference on Multimedia and Expo (ICME) 201

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    PCNN-Based Image Fusion in Compressed Domain

    Get PDF
    This paper addresses a novel method of image fusion problem for different application scenarios, employing compressive sensing (CS) as the image sparse representation method and pulse-coupled neural network (PCNN) as the fusion rule. Firstly, source images are compressed through scrambled block Hadamard ensemble (SBHE) for its compression capability and computational simplicity on the sensor side. Local standard variance is input to motivate PCNN and coefficients with large firing times are selected as the fusion coefficients in compressed domain. Fusion coefficients are smoothed by sliding window in order to avoid blocking effect. Experimental results demonstrate that the proposed fusion method outperforms other fusion methods in compressed domain and is effective and adaptive in different image fusion applications

    Spatially Directional Predictive Coding for Block-based Compressive Sensing of Natural Images

    Full text link
    A novel coding strategy for block-based compressive sens-ing named spatially directional predictive coding (SDPC) is proposed, which efficiently utilizes the intrinsic spatial cor-relation of natural images. At the encoder, for each block of compressive sensing (CS) measurements, the optimal pre-diction is selected from a set of prediction candidates that are generated by four designed directional predictive modes. Then, the resulting residual is processed by scalar quantiza-tion (SQ). At the decoder, the same prediction is added onto the de-quantized residuals to produce the quantized CS measurements, which is exploited for CS reconstruction. Experimental results substantiate significant improvements achieved by SDPC-plus-SQ in rate distortion performance as compared with SQ alone and DPCM-plus-SQ.Comment: 5 pages, 3 tables, 3 figures, published at IEEE International Conference on Image Processing (ICIP) 2013 Code Avaiable: http://idm.pku.edu.cn/staff/zhangjian/SDPC
    • …
    corecore