Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 536215, 9 pages
http://dx.doi.org/10.1155/2015/536215

Research Article

Hindawi

PCNN-Based Image Fusion in Compressed Domain

Yang Chen and Zheng Qin

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Correspondence should be addressed to Yang Chen; yang-chen07@mails.tsinghua.edu.cn
Received 8 October 2014; Revised 6 January 2015; Accepted 7 January 2015

Academic Editor: Yi-Kuei Lin

Copyright © 2015 Y. Chen and Z. Qin. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper addresses a novel method of image fusion problem for different application scenarios, employing compressive sensing
(CS) as the image sparse representation method and pulse-coupled neural network (PCNN) as the fusion rule. Firstly, source images
are compressed through scrambled block Hadamard ensemble (SBHE) for its compression capability and computational simplicity
on the sensor side. Local standard variance is input to motivate PCNN and coefficients with large firing times are selected as the
fusion coefficients in compressed domain. Fusion coeflicients are smoothed by sliding window in order to avoid blocking effect.
Experimental results demonstrate that the proposed fusion method outperforms other fusion methods in compressed domain and
is effective and adaptive in different image fusion applications.

1. Introduction

Image fusion is the processing of combining the complemen-
tary information from multiple source images into a fused
image which provides more accuracy than any of the source
images. Image fusion is widely used in civil, military, and
medical image processing. For example, fusion of multifocus
images [1, 2] can provide a better view for human or machine
perception. Fusion of infrared and visible light [3, 4] can
provide a strong ability of discovering important targets with
detailed texture expression. In addition, fusion of computed
tomography (CT) image and magnetic resonance imaging
(MRI) images [5, 6] can provide detailed information on
bones structures and soft tissue for diagnosis.

Many image fusion methods have been proposed and
they can be classified into three levels of information rep-
resentation, namely, pixel level [7, 8], feature level [9], and
decision level [10]. Among these categories of image fusion,
the pixel level image fusion is the most effective in terms
of conveying more information from multimodal images.
Particularly, multiscale transform based methods are the
most widely used, such as pyramid [11], gradient [12], wavelet
[13-15], and contourlet [16-18].

In recent years, CS [19, 20] has become a much preferred
algorithm for image fusion and other image processings due
to its compression capability in the sampling procedure on
the sensor side. Sampling is performed on source images to

obtain their linear measurements in the compressed domain.
There are different CS sampling patterns addressed in previ-
ous CS literature [20-23], such as discrete cosine transform
(DCT) [21], star shape, double-star shape, star-circle shape
[22], and scrambled block Hadamard ensemble (SBHE) [24].
In the fusion rules of compressive image fusion, weighted
fusion factors are calculated by mathematical combinations
of image channels. The calculation rules of fusion weighted
factors are mainly based on average [25], mean, variance,
PCA [26, 27], and mutual information [28, 29]. In addition,
fused image in compressed domain can be reconstructed
from the measurement according to a recovery algorithm
such as gradient projection for sparse reconstruction (GPSR)
[30], basis pursuit [31], total variation minimization [32],
orthogonal matching pursuit [33], and Ll-norm minimiza-
tion [34, 35].

Different from existed compressive image fusion meth-
ods, this paper addresses a novel image fusion method by
using PCNN in compressed domain. PCNN is a biologically
inspired neural network algorithm developed by Eckhorn et
al. [36], which has been used in image segmentation, image
fusion [2], image enhancement, and pattern recognition.
It is characterized by the global coupling and pulse syn-
chronization of neurons. These characteristics benefit image
fusion which makes use of local image information. Gen-
erally, humans are sensitive to edges or salient information.



Therefore, local standard variance, which stands for gradient
activity in the local neighbourhood, is used to motivate
PCNN neurons in this paper.

The remainder of the paper is organized as follows.
Section 2 provides a brief description of compressive sens-
ing theory. Proposed image fusion methods in compressed
domain are illustrated in Section 3. Experimental results and
discussions are presented in Section 4 and conclusions are
provided in Section 5.

2. Compressive Sensing and Sampling Pattern

Compressive sensing theory [19, 20] enables a sparse or
compressible signal to be reconstructed from a small number
of nonadaptive linear projections, thus significantly reducing
the sampling and computation costs.

2.1. Background on Compressive Sensing. Consider an
unknown signal x € RY; it is expressed in the following form
on the orthogonal base: x = Wa. For the coefficient vector «,
if only K elements are not zero, we say K is sparse when x is
in the substrate W. After the measurement matrix M € R™N
projection, there isy = Mx = MWa. Since M <« N, the
projection process combines the traditional signal sampling
and compression process. Through y and M, direct recovery
of x is morbid inverse problem. But sparse theory suggests
that this problem can be transformed into an optimization
problem of sparse vectors to be solved:

min |«|,

@
st.  y=®dq,

where || # ||, represents L, norm. Thus the signal x can be
restored from the formula x = Ya.

Subsequently, measurement matrix is required to satisfy
the following properties (RIP) criterion in order to recover
signal x accurately:
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where ¢ > 0, || * ||, represents norm. v is a N dimensional
vector with strictly K sparseness. That is to say, matrix M and
substrate ¥ are not related.

2.2. SBHE Sampling. In the block CS, an image is divided into
small blocks with the size of N' (B x B). Sampling operator ®;
with size of m; x N is formed by the partial block Hadamard
transform with its columns randomly permuted as SBHE
operator [24]. The sampling operator ® is a block diagonal
matrix, which is expressed as
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where H; represents the Hadamard matrices of B x B.
Let x; denote the vectorized signal of the ith block. The
corresponding measurement output vector is expressed as

yi = ©x;. (4)

Then, the measurement output vector of the entire image is
determined by

Y1

Yy
v=.1 (5)

Yr

SBHE is adopted as the sampling pattern in this paper,
which has been shown to satisfy the five requirements, includ-
ing near optimal performance, university, fast computation,
being memory efficient, and being Hardware friendly.

3. Proposed Medical Image Fusion Method

3.1. Image Fusion Framework in Compressed Domain. In
image fusion, pixel level image fusion offers effective fused
information at the cost of higher computational complexity.
Compressed domain approaches, on the other hand, are
more promising due to their compression capability and
computational simplicity on the sensor side. Thus, it is
important to explore the compressive image fusion method,
and the flowchart of image fusion in compressed domain is
illustrated as Figure 1.

Firstly, source images are compressed through compres-
sive sensing so as to facilitate the transmission of the sensor.
In the fusion phase, fusion rule is used to combine the
compressive sensing coefficients. And then inverse trans-
formation is applied to the coefficients derived from the
fusion, and the fused image is obtained eventually. In this
paper, SBHE is adopted as the sampling pattern and GPSR
reconstruction algorithm is used as well.

3.2. PCNN Fusion Rule. PCNN model consists of three parts:
the dendritic tree, the linking modulation, and the pulse
generator. The role of the dendritic tree is to receive the
inputs from two kinds of receptive fields, the linking and
the feeding. The linking receives local stimulus from the
output of surrounding neurons, while the feeding receives
local stimulus and external stimulus. We adopt PCNN as the
fusion rule and the flowchart of the proposed PCNN-based
image fusion in compressed domain is shown in Figure 2.
The procedure of the proposed method is summarized in
Algorithm 1.

Algorithm 1 (PCNN-based image fusion in compressed
domain). (1) Decompose the source images by SBHE sam-
pling pattern.

(2) Measure the local standard variance S in sliding
window with (6).

(3) Motivate PCNN with local standard variance S,
generate pulse of neurons with (8), and calculate the firing
times T with (9).
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FIGURE 1: The flowchart of image fusion in compressed domain.
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FIGURE 2: The flowchart of PCNN-based image fusion in compressed domain.

(4) Calculate the decision map D with (10), and weighted
factors are smoothed by the sliding window with (11) and (12).

(5) Fusion coeflicients are obtained with weighted factors
of the compressed image.

(6) Reconstruct the fused image from the fusion coefti-
cients by GPSR algorithm.

We use the local standard variance to motivate the PCNN
model. The local standard variance S, . at the point (r, c) of the
source image is calculated as

—\2
Sr,c = sqrt (Ir—l,c—k - Ir,c) > (6)
(Lk)eQ(r,c)
- Z(l,k)eﬂ(r,c) Irfl,cfk (7)
I, = =tend oo
’ M

where I,  represents the gray value of the point (r, c) at the jth
block of the image and M denotes the number of elements
in Q(r,c), which denotes the neighbourhood of the point
(r,0). S, . measures the local standard variance in Q(r,c).

We use the local standard variance to motivate PCNN, and
corresponding PCNN model can be expressed as

F,

rc

—al
Le=e L, (n-1)+V, YW, Y, (n-1),
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Urc (n) = Frc (n) = (1 + ﬁch (7’1)) > (8)

0,.(n) =e%, (n-1)+V,Y,.(n—1),

L it U, (n) >0, (n)
Yie () = {O, otherwise,
T.(n) =T, (n-1)+Y,. (n), )

where the feeding input F,, equals the local standard variance
S, .- The linking input L, equals the sum of neurons firing
times in the linking range with the range size of (p, q). W,
is the synaptic gain, and «; denotes the decay constants. V;
and Vj are the amplitude gain. S is the linking strength. U,,
is total internal activity and 0, is the threshold. # denotes the
iteration times. T, (n) denotes firing times at iteration » at the
point (7, ¢). The neuron generates a pulse, thatis, Y,. = 1, when
U,. is larger than 0,.. Due to the reason that neighbouring
coeflicients with similar features represent similar firing times



in given iteration times, firing times, that is, T,.(n), are used
to represent image information, which is defined as (9).

The decision map D is used to decide weighted factors of
the source images in the fused image, which can be calculated
in (10). The weighted factors at the jth block are smoothed
by the sliding window, which are calculated in (11) and (12).
Coeflicients with larger firing times have more weighted
factors in the fused image:

el 2
D, - 1, if T, (r%) >T, (n) (10)
0, otherwise,
D
wl _ ZT,C 76, (11)
Drel
w, =1-w;. (12)

4. Experimental Results

4.1. Experiment Setup. We conduct the experiment on
six image datasets with three application scenarios. These
fusion applications are multifocus image fusion, infrared
and visible light image fusion, and medical image fusion.
In addition to visual comparison, we also present fusion
results with three objective metrics: information entropy
(IE), mutual information (MI) [29], and QAB/F [37]. We
compare these image fusion methods in compressed domain,
with sampling rate set at 0.5. In addition, we use SBHE
as the sampling pattern and adopt GPSR as the CS
reconstruction algorithm. The SBHE block size is set at
32 x 32. In this way, the block Hadamard sampling
matrix can encode pixels with 32 x 32. All the source
images can be obtained at http://www.imagefusion.org and
http://www.med.harvard.edu/aanlib/home.html.

4.2. Experimental Result

4.2.1. Multifocus Image Fusion. Due to the limited focus
depth of the optical lens, it is not possible to get an image that
contains all relevant objects in focus. In this way, multifocus
image fusion is required to fuse the images taken from
the same view point under different focal settings, in order
to provide a fused image with a better description of the
scene than any individual image. The obtained fusion image
shows all the details of the source image, making it more
conducive to the follow-up treatment. We implement CS
image fusion based on six fusion methods on pixel level
combined with compressive sensing coefficients and compare
these fusion methods on two datasets of multifocus image
fusion. Experimental results are shown in Figure 3, and
objective measurements are provided in Table 1, with the best
results marked in bold.

We have proposed the compressive image fusion method
based on PCNN. It is difficult to evaluate multisensor image
fusion results from subjective evaluation for the reason
that the fusion methods adopt the same CS theory as the
image decomposition method. Therefore, fusion results are

evaluated by means of IE, MI, and Q*®/F metrics that can
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provide objective measurements although minor differences
exist. As shown in Table 1, it is demonstrated that, in the
fusion scenario of multifocus images, our proposed method
has the best result from the perspective of both objective
assessment and visual perception.

4.2.2. Infrared and Visible Light Image Fusion. The infrared
(IR) image and visible image are different kinds of images
where IR image has low definition but a strong ability
of discovering important military targets, while the visi-
ble image has higher definition and provides more detail
information of texture expression. Thus, the IR and visible
image fusion can help in target detection and recognition.
We implement CS image fusion based on six fusion methods
combined with compressive sensing coeflicients and conduct
the experiments in “UNcamp” image sets (two frames are
selected randomly). Experimental results and objective mea-
surements are provided as in Figure 4 and Table 2.

In infrared and visible light images fusion scenarios, as
shown in Figure 4, the proposed fusion method has better
object detection ability. In addition, Table 2 shows that the
proposed method has the better performance in IE, MI, and
Q*P'F metrics than any of the other five fusion methods. It
also demonstrates that the fused image reserved the edge and
salient information from source images.

4.2.3. Medical Image Fusion Application. Medical image
fusion plays an important role in clinical applications. We
apply the proposed method to medical image fusion on two
image datasets. These datasets include CT-MRI image fusion
and Tl-weighted MR image (MR-T1) and T2-weighted MR
image (MR-T2) fusion. Fusion of CT and MRI images can
preserve bone structures and soft tissues information at the
same time. In addition, MR-T1 and MR-T2 image fusion can
provide the details of an anatomical structure of tissues and
the information about normal and pathological tissues at
the same time. Experiments are conducted to evaluate the
fusion method in compressed domain, shown in Figure 5. The
objective measurements are provided in Table 3.

As Figure 5 shows, the fused image in Figure 5(h)
obtained by our proposed method contains both the bone
structure from the CT image and the soft tissue information
from the MRI image. In addition, the fusion result of the pro-
posed method is smooth while the result of mean, variance,
and PCA causes the blocking effect. Table 3 demonstrates that
the proposed method has the best result in terms of IE, MI,

andQAB/F.

5. Conclusions

In this paper, we present a PCNN-based image fusion
framework in compressed domain. In this framework, the
local standard variance is calculated as the input to motivate
PCNN, which guides the calculation of weighted factors in
the fusion rule. Experiments are conducted on six image
datasets with three fusion application scenarios to validate
the performance and adaptability of the proposed method.
Experimental results demonstrate that the proposed method
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FIGURE 3: Comparison result of the multifocus image fusion.
TaBLE 1: Comparison of fusion methods for Clock and Pepsi.
Image Method Average Mean Variance MI PCA Proposed
IE 7.3939 7.3814 7.3818 7.3843 7.3812 7.4060
Clock MI 6.3917 6.4224 6.4202 6.4129 6.4242 6.4550
QABIF 0.4174 0.4200 0.4182 0.4227 0.4183 0.5920
1IE 7.0311 7.0311 7.0312 7.0314 7.0312 7.0452
Pepsi MI 5.4329 5.4379 5.4341 5.4343 5.4342 5.4938

QAB/F 0.1937 0.1939 0.1932 0.1927 0.1932 0.2377
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ot
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FIGURE 4: Comparison result of the infrared and visible light image fusion.

TaBLE 2: Comparison of fusion methods for “UNcamp” dataset (frames 1807 and 1810).

Image Method Average Mean Variance MI PCA Proposed
IE 6.2244 6.2106 6.2262 6.2168 6.2297 6.3605

fgrg?e MI 1.4523 1.3853 1.3758 1.4119 13712 1.7758
QAB/F 0.1129 0.1165 0.1174 0.1191 0.1187 0.2276

IE 6.2280 6.2269 6.2411 6.2233 6.2444 6.3781

fgfgl ¢ MI 14642 1.4202 1.4204 1.4422 14049 1.9327

QAB/F 0.1077 0.1145 0.1142 0.1129 0.1152 0.2129
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(b) Image B
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FI1GURE 5: Comparison result of the medical image fusion.

TaBLE 3: Comparison of fusion methods for CT-MRI and MRT1-MRT?2.

(p) Proposed

Image Method Average Mean Variance MI PCA Proposed
IE 5.8369 6.6259 6.5445 6.4765 6.6467 6.5692
CT-MRI MI 2.9354 2.5375 2.2429 2.4872 2.4367 2.9798
QABIE 0.2720 0.5762 0.5116 0.5250 0.5870 0.6711
IE 3.9925 41990 4.1803 4.0174 4.2195 4.4534
MRT1-MRT2 MI 2.7466 2.9481 2.9445 2.7193 2.9971 3.6100
QABIF 0.3686 0.4864 0.4845 0.3732 0.5092 0.7362




has better performance in terms of objective evaluation
metrics compared with other image fusion methods in com-
pressed domain. Moreover, the proposed method is adaptive
for different application scenarios illustrated in this paper.

It is significant to explore the image fusion method
in compressed domain due to the reason that compressive
sensing has excellent ability of compression capability and
computational simplicity on the sensor side. In the future,
we plan to extend the proposed method by integrating more
sampling patterns and develop more advanced fusion rules.
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